查看原文
其他

高一数学:对数与对数函数的学习指导

南宁许兴华 许兴华数学 2022-07-17

【读者必看】为防止喜欢《许兴华数学》的朋友失联,敬请长按二维码识别关注备用公众号《许兴华文摘》:

【几点说明】公众号《许兴华数学》诚邀全国各地中小学数学教师、教研员和数学爱好者热情投稿!来稿时请注意以下五点:(1)来稿请注明真实姓名、工作单位、联系方式(无具体工作单位和真实姓名的投稿,一般都不会采用)。

(2)来稿一般要求同时用word文档和PDF格式的电子稿件(防止不同版本的Word打开时出现乱码)。另外,也接受少数著名教师的手写稿(手写稿必须清晰可读)。

(3)每篇文章请认真审查复核,防止错误发生,来稿文责自负。如有抄袭,则有可能被举报并受到有关著作版权部门的追责。
(4)投稿邮箱:chinamatha@163.com;或投稿到QQ邮箱: 81983781@qq.com.

(5) 本公众号对优秀作者和名师一般会附上“作者简介”,以让广大读者更好地了解作者的研究成果和方向,以便进一步学习作者的相关数学思想或解题方法。
      公众号“许兴华数学”是南宁三中许老师的微信公众号。许兴华老师是中学高级教师,南宁市学科带头人。本公众号曾荣获得2016年数学文化杂志社主办的携手北京大学数学文化节“全国最红数学公众号”评选全国第一名(百度、搜狗和360均可轻松搜索出本公众号文章)。
非常欢迎网上各种媒体转载本公众号文章,所有转载须注明:
来源
公众号《许兴华数学》,否则,视为侵权!谢谢!

【高一数学】对数与对数函数的学习指导

 (许兴华数学)


【考点】对数及运算法则;换底公式;对数与指数的综合应用;

对数函数的图象与性质;了解对数函数与指数函数互为反函数(底数相同时)。

【考纲要求】理解对数的概念及运算性质;能用换底公式将一般对数转化为常用对数;了解对数在简化运算中的作用。理解对数函数的概念;理解对数函数的单调性;掌握图象通过的特殊点;

【考查角度】1.对数的运算;利用换底公式化简,求值;指数式与对数式的相互转化。

2.利用单调性比较大小,求最值;图象及变换;求复合函数的单调性、定义域、值域等。

2.两种类型的对数

(1)常用对数通常将以10为底的对数叫做常用对数,的常用对数

二、对数函数

1.对数函数的概念

【题后总结】在对数的运算中要充分注意利用对数的运算性质进行化简,若出现不同的,应利用换底公式换成相同的.

【解题小结】对于对数函数综合问题,应深刻地认识题目并会运用相关的知识去解决问题.对于研究复合对数函数性质的问题,我们抓住对数函数的特点,结合一般函数求定义域、单调性的解题思路,对“路”处理即可.

【错因分析】本题易产生两个误区.

误区1:因缺乏由已知函数单调性到函数解析式参量范围讨论的逆向思维训练,导致无法动笔,或胡乱下笔.

误区2:犯忽视函数定义域的错误,或错用复合函数的性质,引起错误.



【推荐阅读】

高中数学的四个刷题误区, 让你的成绩惨不忍睹! 一篇文章拯救你!

高中数学中简化解析几何运算的5个技巧

【震惊】一所县城中学刷屏,11人超过700分!凌晨校园照震撼无数家长!

毛坦厂中学高考放榜, 再次刷爆网络! 改变命运的梦想, 都有挡不住的光芒!

2020年人教版高中新教材网络培训会开班式

2020年人教版高中数学新教材总体介绍
利用导数研究不等式问题

高一数学:函数的奇偶性及相关简单应用

袁亚湘院士《数学漫谈》讲座课件

林琳——用配方法解两道数学最值题

高中数学:数列递推公式的9种常见模型

初中与高中数学衔接教材(上)ooo全面完整版

初中与高中数学衔接教材(下)ooo全面完整版

对2018年高考全国卷Ⅰ理科数学解析几何试题的拓展探究—兼谈核心素养下圆锥曲线的备考

高考数学辅导:构造函数法证明不等式的六种策略

【教研撷萃】高考中圆锥曲线解答题的研究方向

高一数学:函数单调性的简单应用

【培训提高】放假了!教师如何写好教学反思?值得所有教师收藏!

大学你适合读数学专业吗?北京某大学老师为你提示数学专业的秘密!(上)

大学你适合读数学专业吗?北京某大学老师为你提示数学专业的秘密!(下)

高中数学中的八种构造对偶式解题方法

2020高考志愿填报参考:数学专业大学排名,数学专业的就业方向

考得好不如志愿填得好 | 一篇文章教你填报完美的大学!附:“最权威”全国普通高等学校名单

700分以上学霸激增!2020年高考哪个省最强?

高考速递:十五省公布高考录取分数线(附填报志愿链接)

【投稿须知】公众号《许兴华数学》诚邀全国各地中小学数学教师、教研员和数学爱好者热情投稿!来稿时请注意以下五点:

(1)来稿请注明真实姓名、工作单位、联系方式(无具体工作单位和真实姓名的投稿,一般都不会采用)。

(2)来稿一般要求同时用word文档和PDF格式的电子稿件(防止不同版本的Word打开时出现乱码)。另外,也接受少数著名教师的手写稿(手写稿必须清晰可读)。

(3)每篇文章请认真审查复核,防止错误发生,来稿文责自负。如有抄袭,则有可能被举报并受到有关著作版权部门的追责。
(4)投稿邮箱:chinamatha@163.com;或加主编微信xuxinghua168投稿.
(5)本公众号对优秀作者和名师一般会附上“作者简介”,以让广大读者更好地了解作者的研究成果和方向,以便进一步学习作者的相关数学思想或解题方法。



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存