高中专题复习||函数的对称性与周期性
函数的对称性与周期性
一、基础知识
(一)函数的对称性
1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称
2、轴对称的等价描述:
4、对称性的作用:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分析一侧的性质,便可得到整个函数的性质,主要体现在以下几点:
(1)可利用对称性求得某些点的函数值
(2)在作图时可作出一侧图像,再利用对称性得到另一半图像
(3)极值点关于对称轴(对称中心)对称
(4)在轴对称函数中,关于对称轴对称的两个单调区间单调性相反;在中心对称函数中,关于对称中心对称的两个单调区间单调性相同
7、函数周期性的作用:简而言之“窥一斑而知全豹”,只要了解一个周期的性质,则得到整个函数的性质。
(1)函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值
(2)图像:只要做出一个周期的函数图象,其余部分的图像可利用周期性进行“复制+粘贴”
注:其中(3)(4)在三角函数中应用广泛,可作为检验答案的方法
(1)本题是单调性与对称性的一个结合,入手点在于发现条件的自变量关系,与所求函数值关系,而连接它们大小关系的“桥梁”是函数的单调性,所以需要将自变量装入同一单调区间内。而对称性起到一个将函数值等价转化的作用,进而与所求产生联系
(2)数形结合的关键点有三个:第一个是中心对称图像的特点,不仅仅是单调性相同,而且是呈“对称”的关系,从而在图像上才能看出
(1)周期函数处理零点个数时,可以考虑先统计一个周期的零点个数,再看所求区间包含几个周期,相乘即可。如果有不满一个周期的区间可单独统计
(2)在为周期函数分段时有一个细节:“一开一闭”,分段的要求时“不重不漏”,所以在给周期函数分段时,一端为闭区间,另一端为开区间,不仅达到分段要求,而且每段之间保持队型,结构整齐,便于分析。
(3)当一个周期内含有对称轴(或对称中心)时,零点的统计不能仅限于已知条件,而要看是否由于对称产生新的零点。其方法一是可以通过特殊值的代入,二是可以通过图像,将零点和对称轴标在数轴上,看是否有由对称生成的零点(这个方法更直观,不易丢解)
【来源】每日一题学好高中数学。转自:乐学数韵。
【推荐阅读】
【关于学科核心素养】单元如何设计和高考试题,是如何落实核心素养的
【高中数学】利用函数表达式确认函数图像的这五大技巧,你都掌握了吗?
高中数学的四个刷题误区, 让你的成绩惨不忍睹! 一篇文章拯救你!
【震惊】一所县城中学刷屏,11人超过700分!凌晨校园照震撼无数家长!
毛坦厂中学高考放榜, 再次刷爆网络! 改变命运的梦想, 都有挡不住的光芒!
2020年人教版高中数学新教材总体介绍
利用导数研究不等式问题
对2018年高考全国卷Ⅰ理科数学解析几何试题的拓展探究—兼谈核心素养下圆锥曲线的备考
【培训提高】放假了!教师如何写好教学反思?值得所有教师收藏!
大学你适合读数学专业吗?北京某大学老师为你提示数学专业的秘密!(上)
大学你适合读数学专业吗?北京某大学老师为你提示数学专业的秘密!(下)
2020高考志愿填报参考:数学专业大学排名,数学专业的就业方向
考得好不如志愿填得好 | 一篇文章教你填报完美的大学!附:“最权威”全国普通高等学校名单
【投稿须知】公众号《许兴华数学》诚邀全国各地中小学数学教师、教研员和数学爱好者热情投稿!来稿时请注意以下五点:
(1)来稿请注明真实姓名、工作单位、联系方式(无具体工作单位和真实姓名的投稿,一般都不会采用)。
(2)来稿一般要求同时用word文档和PDF格式的电子稿件(防止不同版本的Word打开时出现乱码)。另外,也接受少数著名教师的手写稿(手写稿必须清晰可读)。
(3)每篇文章请认真审查复核,防止错误发生,来稿文责自负。如有抄袭,则有可能被举报并受到有关著作版权部门的追责。
(4)投稿邮箱:chinamatha@163.com;或加主编微信xuxinghua168投稿.(5)本公众号对优秀作者和名师一般会附上“作者简介”,以让广大读者更好地了解作者的研究成果和方向,以便进一步学习作者的相关数学思想或解题方法。