什么是系统生物学 | 集智百科
本文是对集智百科中“系统生物学”词条的摘录,参考资料及相关词条请参阅百科词条原文。
目录
一、什么是系统生物学?
二、历史概述
三、相关领域
四、生物信息学应用
五、相关资源推介
六、集智百科词条志愿者招募
系统生物学 Systems biology 是对复杂生物系统进行演算分析、数学分析和建模的学科。它是一个以生物学为基础的跨学科研究领域,侧重于生物系统内复杂的相互作用,采用整体的方法(整体论 holism 而不是更传统的还原论 reductionism)进行生物学研究。它跨越了系统论和应用数学方法的领域,发展成为复杂系统生物学 complex systems biology 的一个分支。
特别是从2000年起,这个概念在生物学中被广泛应用于各种场合。人类基因组计划 Human Genome Project是生物学中应用系统思维的一个例子,它在遗传学这个生物学领域中引入了新的协作型工作方式。
系统生物学的目标之一是模拟和发现细胞 cells、组织 tissues 和有机体 organisms 作为一个系统运作的涌现特性,其理论描述只有使用系统生物学技术才有可能实现。
系统生物学可以从许多不同的方面来考虑。
系统生物学作为一个研究领域,具体探讨关于生物系统的组成部分之间的互动,以及各系统要素的相互作用如何产生该系统的功能和行为(例如,代谢通路中或心跳时产生的酶和代谢物)。
作为一种研究范式,系统生物学通常被认为与所谓的还原论范式(生物组织)相对立,尽管它完全符合科学方法。以下几句话中提到了两种范式之间的区别: “还原论方法成功地确定了大多数组成部分和许多相互作用,但不幸的是,没有提供令人信服的概念或方法来理解系统特性是如何出现的... 通过多个组分同时进行定量测量”改为“通过观察多个分组同时进行的定量实验。”(Sauer等人)“系统生物学...是合并而不是分解,是整合而不是简化。它要求我们建立起与我们的还原论方法一样严谨但不同的整合思维方式...这意味着彻底改变我们的哲学。”(丹尼斯·诺贝尔 Dennis Nobel)
作为一系列用于进行研究的操作方案,即一个由理论、分析或计算模型组成的循环,系统生物学提出关于生物系统的具体可检验的假设,接着进行实验验证,然后使用新获得的细胞或细胞过程的定量描述来优化计算模型或理论。由于目标是一个系统中相互作用的模型,所以最适合系统生物学的实验技术就是那些全系统范围的、尽可能完整的实验技术。因此,转录组学、代谢组学、蛋白质组学和高通量技术被用来收集定量数据,从而用于模型的建立和验证。
作为动力系统理论在分子生物学领域的应用,系统生物学对所研究的系统在动力学上的关注正是它和生物信息学之间的主要概念差异。
作为一种社会科学现象,系统生物学由利用多样的跨学科的工具和人员的实验资源,寻求整合有关生物系统相互作用的复杂数据的战略所定义。
各种各样的观点说明了这样一个事实,即系统生物学指的是一系列周边重叠概念的集合,而不是一个独立的领域。然而,随着系统生物学的教职和研究机构在全球范围内的激增,这个术语在2007年已经广泛流行和普及。
图1:系统方法研究生物学的一个例证:Genomics
二、历史概述
二、历史概述
三、 相关领域
系统生物学具有利用跨学科工具从多个实验来源获取、整合和分析复杂数据集的能力,一些典型的技术平台包括:
表型组学,即生物表型在其生命周期内的变化。基因组学,即生物脱氧核糖核酸序列、包括生物内部细胞特异性变异(例如端粒长度变化); 表观基因组学或表观遗传学,生命体和相应的细胞特异性转录调控因子没有经验性地编码在基因组序列中(例如 DNA 甲基化、组蛋白乙酰化和脱乙酰化等); 转录组学,通过 DNA 微阵列或基因表达的系列分析来测量生物体、组织或整个细胞的基因表达。干扰素组学,即生物体、组织或细胞水平的转录校正因子(例如RNA干扰); 蛋白质组学,通过二维凝胶电泳、质谱法或多维蛋白质识别技术(先进的高效液相色谱系统加上质谱法),进行生物体、组织或细胞水平的蛋白质和多肽测量。子学科包括磷酸蛋白质组学、糖蛋白质组学和其他检测化学修饰蛋白质的方法。 代谢组学,测量有机体、细胞或组织水平系统中被称为代谢物的小分子; 糖组学,有机体、组织或细胞水平的碳水化合物测量; 脂质组学,有机体、组织或细胞水平的脂质测量。
它们分别是自上而下和自下而上的方法。自上而下的方法尽可能多把系统考虑在内,并且在很大程度上依赖于实验结果。RNA-seq 技术是自上而下实验方法的一个例子。相反,自下而上的方法用于创建详细的模型,同时也结合了实验数据。自下而上方法的一个例子是使用电路模型来描述一个简单的基因网络。
癌症系统生物学的长期目标是能够更好地诊断癌症,对癌症进行分类,并更好地预测建议的治疗结果,这是个性化癌症医学和虚拟癌症患者在更远的前景的基础。在癌症的计算系统生物学方面已经做出了重大的努力,在各种肿瘤的计算机模型中创造了真实的多尺度。
图3:细胞讯息传递途径概述
计算机科学、信息学和统计学的其他方面也用于系统生物学。包括新形式的计算模型,如使用过程计算模拟生物过程(著名的方法包括随机演算,BioAmbients,Beta Binders,BioPEPA 和 Brane 演算)和基于约束的建模; 使用信息提取和文本挖掘技术,综合来自文献的信息;开发在线数据库和存储库共享数据和模型,以及通过软件,网站和数据库或商业诉讼的松散耦合实现数据库集成和软件互操作性的方法;基于网络的方法分析高维基因组数据集。
例如,加权相关网络分析常常用于识别集群(称为模块)、建立集群之间的关系模型、计算集群(模块)成员的模糊度量、识别模块内中心成员,以及利用其他数据集研究集群保存; 基于通路的组学数据分析方法,例如识别和评价不同活性的基因、蛋白质或代谢物通路的方法。许多基因组数据集的分析也包括确定相关性。
此外,由于大量的信息来自不同的领域,发展生物模型的语法和语义健全的表示方法是必要的。
图4:用质量作用定律动力学微分方程建立简单的三蛋白质负反馈回路。每个蛋白质相互作用都是通过米氏反应来描述的。
建立生物学模型
研究人员首先选择一条生物通路,绘制所有蛋白质相互作用的图 。确定了所有的蛋白质相互作用之后,使用符合质量作用定律的动力学来描述系统中反应的速率。质量作用定律动力学将提供微分方程,把生物系统模拟成一个数学模型,其中微分方程的参数可以由实验来确定。这些参数值是系统中每对蛋白质相互作用的反应速率。这个模型决定了生物系统中主要蛋白质的行为,并且为理解单个蛋白质的特殊行为提供了新的视角。当不能够收集一整个系统的所有反应速率时。可以通过模拟已知参数的模型并且提供可能参数值的目标行为,来确定未知的反应速率。
图5:简单的三种蛋白质负反馈回路的浓度-时间图。对于初始条件,所有参数设置为0或1。反应持续进行,直到达到平衡。这张图是每种蛋白质随时间的变化。
五、相关资源推荐
五、相关资源推荐
生命是什么?生命如何起源?生命如何演化?揭开生命复杂性的重重谜题,有赖于生物、化学、物理、计算机等不同背景人士的共同探索。我们正在组织关于生命复杂性的系列读书会,持续两个月,研读硬核论文书籍,分享学界前沿成果。欢迎对生命复杂性有浓厚兴趣的朋友报名参加。
六、百科项目志愿者招募
六、百科项目志愿者招募
作为集智百科项目团队的成员,本文内容由CecileLi、Thingamabob、许许参与贡献。我们也为每位作者和志愿者准备了专属简介和个人集智百科主页,更多信息可以访问其集智百科个人主页
在这里从复杂性知识出发与伙伴同行,同时我们希望有更多志愿者加入这个团队,使百科词条内容得到扩充,并为每位志愿者提供相应奖励与资源,建立个人主页与贡献记录,使其能够继续探索复杂世界。
欢迎扫描下方二维码添加负责人加入集智百科团队!
来源:集智百科编辑:曾祥轩
推荐阅读
集智俱乐部QQ群|877391004
商务合作及投稿转载|swarma@swarma.org
◆ ◆ ◆
搜索公众号:集智俱乐部
加入“没有围墙的研究所”
让苹果砸得更猛烈些吧!
👇点击“阅读原文”,阅读“系统生物学“词条内容及参考文献