[1] D. Norman, The Design of Everyday Things, Revised and Expanded Edition (Basic Books, New York, NY, 2013).[2] S. H. Thomke, Managing Experimentation in the Design of New Products, Manage. Sci. 44, 743 (1998).[3] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, Supervised Machine Learning: A Review of Classification Techniques, Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3 (2007), https://datajobs.com/data-science-repo/Supervised-Learning-[SB-Kotsiantis].pdf.[4] P. Mehta, M. Bukov, C.-H. Wang, A. G. R. Day, C. Richardson, C. K. Fisher, and D. J. Schwab, A High-Bias, Low-Variance Introduction to Machine Learning for Phys- icists, Phys. Rep. 810, 1 (2019).[5] J. W. Rocks, N. Pashine, I. Bischofberger, C. P. Goodrich, A.J. Liu, and S.R. Nagel, Designing Allostery-Inspired Response in Mechanical Networks, Proc. Natl. Acad. Sci. U.S.A. 114, 2520 (2017).[6] J. W. Rocks, H. Ronellenfitsch, A. J. Liu, S. R. Nagel, and E. Katifori, Limits of Multifunctionality in Tunable Networks, Proc. Natl. Acad. Sci. U.S.A. 116, 2506 (2019).[7] B. A. Richards and T. P. Lillicrap, Dendritic Solutions to the Credit Assignment Problem, Curr. Opin. Neurobiol. 54, 28 (2019).[8] J. W. Rocks, A. J. Liu, and E. Katifori, Revealing Structure- Function Relationships in Functional Flow Networks via Persistent Homology, Phys. Rev. Research 2, 033234 (2020).[9] N. Pashine, D. Hexner, A. J. Liu, and S. R. Nagel, Directed Aging, Memory, and Natures Greed, Sci. Adv. 5, eaax4215 (2019).[10] D. Hexner, N. Pashine, A. J. Liu, and S. R. Nagel, Effect of Directed Aging on Nonlinear Elasticity and Memory Formation in a Material, Phys. Rev. Research 2, 043231 (2020).[11] D. Hexner, A. J. Liu, and S. R. Nagel, Periodic Training of Creeping Solids, Proc. Natl. Acad. Sci. U.S.A. 117, 31690 (2020).[12] H. Ronellenfitsch and E. Katifori, Global Optimization, Local Adaptation, and the Role of Growth in Distribution Networks, Phys. Rev. Lett. 117, 138301 (2016).[13] M. Stern, C. Arinze, L. Perez, S. E. Palmer, and A. Murugan, Supervised Learning through Physical Changes in a Mechanical System, Proc. Natl. Acad. Sci. U.S.A. 117, 14843 (2020).[14] M. Stern, V. Jayaram, and A. Murugan, Shaping the Topology of Folding Pathways in Mechanical Systems, Nat. Commun. 9, 4303 (2018).[15] J.R. Movellan, Contrastive Hebbian Learning in the Continuous Hopfield Model, Connectionist Models (Elsev- ier, Amsterdam, 1991), pp. 10–17.[16] P. Baldi and P. Sadowski, A Theory of Local Learning, the Learning Channel, and the Optimality of Backpropagation, Neural Netw. 83, 51 (2016).[17] Y. Bengio and A. Fischer, Early Inference in Energy-Based Models Approximates Back-Propagation, arXiv:1510.02777.[18] B. Scellier and Y. Bengio, Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation, Front. Comput. Neurosci. 11, 24 (2017).[19] S. Bartunov, A. Santoro, B. Richards, L. Marris, G. E. Hinton, and T. Lillicrap, Assessing the Scalability of Biologically- Motivated Deep Learning Algorithms and Architectures, in Proceedings of the 32nd Conference on Advances in Neural Information Processing Systems, Montreal, 2018 (CurranAssociates Inc., Red Hook, NY, 2018), pp. 9368–9378.[20] J. Z. Kim, Z. Lu, S. H. Strogatz, and D. S. Bassett, Con- formational Control of Mechanical Networks, Nat. Phys. 15, 714 (2019).[21] M. Ruiz-García, A.J. Liu, and E. Katifori, Tuning and Jamming Reduced to Their Minima, Phys. Rev. E 100, 052608 (2019).[22] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier, Training End-to-End Analog Neural Networks with Equilibrium Propagation, arXiv:2006.01981.[23] A. Laborieux, M. Ernoult, B. Scellier, Y. Bengio, J. Grollier, and D. Querlioz, Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing Its Gradient EstimatorBias, arXiv:2006.03824.[24] G. Thimm and E. Fiesler, High-Order and Multilayer Perceptron Initialization, IEEE Trans. Neural Networks 8, 349 (1997).[25] J. Y. F. Yam and T. W. S. Chow, A Weight Initialization Method for Improving Training Speed in Feedforward Neural Network, Neurocomputing;Variable Star Bulletin 30, 219 (2000).[26] C. P. Goodrich, A. J. Liu, and S. R. Nagel, The Principle of Independent Bond-Level Response: Tuning by Pruning to Exploit Disorder for Global Behavior, Phys. Rev. Lett. 114, 225501 (2015).[27] N. Pashine, Local Rules for Fabricating Allosteric Net- works, arXiv:2101.06793.[28] L. Bottou, Stochastic Learning, Lecture Notes in Computer Science (Springer, Berlin, 2003), pp. 146–168.[29] Y. LeCun, C. Cortes, and C. J. Burges, The MNIST Data- base of Handwritten Digits, http://yann.lecun.com/exdb/ mnist, 2010.[30] S. L. Soo and S. K. Tung, Deposition and Entrainment in Pipe Flow of a Suspension, Powder Technol. 6, 283 (1972).[31] W. S. J. Uijttewaal and R. V. A. Oliemans, Particle Dispersion and Deposition in Direct Numerical and Large Eddy Simu- lations of Vertical Pipe Flows, Phys. Fluids 8, 2590 (1996).[32] J. Jin, S. Chen, and J. Zhang, UV Aging Behaviour of Ethylene-Vinyl Acetate Copolymers (EVA) with Different Vinyl Acetate Contents, Polymer Degradation Stability 95, 725 (2010).[33] A. Boubakri, N. Haddar, K. Elleuch, and Y. Bienvenu, Impact of Aging Conditions on Mechanical Properties of Thermoplastic Polyurethane, Mater. Des. 31, 4194 (2010).[34] A. Holtmaat and K. Svoboda, Experience-Dependent Struc- tural Synaptic Plasticity in the Mammalian Brain, Nat. Rev.Neurosci. 10, 647 (2009).[35] N. Yasumatsu, M. Matsuzaki, T. Miyazaki, J. Noguchi, and H. Kasai, Principles of Long-Term Dynamics of Dendritic Spines, J. Neurosci. 28, 13592 (2008).[36] D. D. Stettler, H. Yamahachi, W. Li, W. Denk, and C. D. Gilbert, Axons and Synaptic Boutons Are Highly Dynamic in Adult Visual Cortex, Neuron 49, 877 (2006).[37] D. Ratna and J. Karger-Kocsis, Recent Advances in Shape Memory Polymers and Composites: A Review, J. Mater. Sci. 43, 254 (2008).[38] I. K. Kuder, A. F. Arrieta, W. E. Raither, and P. Ermanni, Variable Stiffness Material and Structural Concepts for Morphing Applications, Prog. Aerosp. Sci. 63, 33 (2013).[39] M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, and B. Scellier, Updates of Equilibrium Prop Match Gradients of Backprop through Time in an RNN with Static Input, Adv. Neural Inf.Process.Syst.32,7081(2019),https://proceedings.neurips.cc/paper/2019/file/67974233917cea0e42a49a2fb7eb4cf4-Paper.pdf.[40] S. Fancher and E. Katifori, Tradeoffs between Energy Efficiency and Mechanical Response in Fluid Flow Networks, arXiv:2102.13197.[41] B. A. Richards, T. P. Lillicrap, P. Beaudoin, Y. Bengio, R. Bogacz, A. Christensen, C. Clopath, R.P. Costa, A. de Berker, S. Ganguli et al., A Deep Learning Framework for Neuroscience, Nat. Neurosci. 22, 1761 (2019).[42] M. J. Cipolla, The Cerebral Circulation, Integrated Systems Physiology: From Molecule to Function, 1st ed. (Morgan & Claypool Life Sciences, San Rafael, CA, 2009), pp. 1–59.[43] Yu.-R. Gao, S. E. Greene, and P. J. Drew, Mechanical Restriction of Intracortical Vessel Dilation by Brain Tissue Sculpts the Hemodynamic Response, NeuroImage 115, 162 (2015).[44] A. Y. Ng and M. I. Jordan, On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes, Advances in Neural Information Processing Systems (MIT press (Bradford Book), Cambridge, MA, 2002), pp. 841–848.[45] T. Jebara, Machine Learning: Discriminative and Gener- ative (Springer Science & Business Media, Berlin, 2012), Vol. 755.[46] C. Parisien, C. H. Anderson, and C. Eliasmith, Solving the Problem of Negative Synaptic Weights in Cortical Models, Neural Comput. 20, 1473 (2008).[47] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge, J. J. Yang, and R. S. Williams, Dot-Product Engine for Neuromorphic Computing: Pro- gramming 1T1M Crossbar to Accelerate Matrix-Vector Multiplication, in Proceedings of the 53nd ACM/EDAC/ IEEE Design Automation Conference (DAC), 2016 (IEEE, New York, 2016), pp. 1–6.[48] Z. Wang, C. Li, W. Song, M. Rao, D. Belkin, Y. Li, P. Yan, H. Jiang, P. Lin, M. Hu et al., Reinforcement Learning with Analogue Memristor Arrays, National electronics review 2, 115 (2019).