长文综述:集群机器人的过去、现在与未来
导语
到目前为止,只有少数实验成功地演示了大量的自治自组织机器人,而集群机器人的实践应用仍是一片空白。
研究领域:群体智能,集群机器人,自组织,演化算法
Marco Dorigo、Guy Theraulaz、Vito Trianni | 作者
鄢鹏高 | 译者
赵雨亭 | 审校
邓一雪 | 编辑
论文题目:
Swarm Robotics: Past, Present, and Future
论文地址:
https://ieeexplore.ieee.org/abstract/document/9460560
目录:
1、集群机器人历史概述
2、经验教训和开放问题
3、新方向和新问题
4、未来应用如何指导研究
5、总结
1. 集群机器人历史概述
1. 集群机器人历史概述
图2. 一些主要用于集群机器人研究的机器人:(a)jasmine [35](图源于维基共享资源);(b)alice [36] (照片由Simon Garnier提供);(c)kilobots [30](照片由Massimo Berruti提供);(d)e-pucks [37];(e)swarm-bots [26];(f)swarmanoid [29]
表 1. 术语表
2. 经验教训和开放问题
2. 经验教训和开放问题
3. 新方向和新问题
3. 新方向和新问题
A. 硬件小型化
B. 异构性
C. 去中心化vs层级结构
D. 相变与适应性
E. 集群机器人的机器学习
F. 安全
G. 人类-集群交互
4. 未来应用如何指导研究
4. 未来应用如何指导研究
A. 集群机器人解决方案的普遍准则
B. 应用、需求和未来研究
5. 总结
5. 总结
参考文献
[1] S. Camazine, J.-L. Deneubourg, N. R. Franks,J. Sneyd, G. Theraulaz, and E. Bonabeau, Self-Organization in Biological Systems. Princeton,NJ, USA: Princeton Univ. Press, 2001.[2] D. J. T. Sumpter, Collective Animal Behavior.Princeton, NJ, USA: Princeton Univ. Press, 2010.[3] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems. New York, NY, USA: Oxford Univ. Press, 1999.[4] M. Dorigo and M. Birattari, “Swarm intelligence,” Scholarpedia, vol. 2, no. 9, p. 1462, 2007.[5] M. Dorigo, “Ant colony optimization,” Scholarpedia, vol. 2, no. 3, p. 1461, 2007.[6] M. Dorigo,M. A. M. de Oca, and A. P. Engelbrecht, “Particle swarm optimization,” Scholarpedia, vol. 3, no. 11, p. 1486, 2008.[7] G. Di Caro and M. Dorigo, “AntNet: Distributed stigmergetic control for communications networks,” J. Artif. Intell. Res., vol. 9, pp. 317–365, Dec. 1998.[8] M. Moussaïd, D. Helbing, and G. Theraulaz, “How simple rules determine pedestrian behavior and crowd disasters,” Proc. Nat. Acad. Sci. USA, vol. 108, no. 17, pp. 6884–6888, 2011. [Online]. Available: https://www.pnas.org/content/108/17/6884[9] R. Beckers, O. E. Holland, and J. L. Deneubourg,“From local actions to global tasks: Stigmergy and collective robotics,” in Proc. 4th Int. Workshop Synthesis Simulation Living Syst. Artif. Life IV, R. A. Brooks and P. Maes, Eds. Cambridge, MA, USA:MIT Press, 1994, pp. 181–189.[10] O. Holland and C. Melhuish, “Stigmergy, self-organization, and sorting in collectiverobotics,” Artif. Life, vol. 5, no. 2, pp. 173–202,Apr. 1999.[11] C. R. Kube and H. Zhang, “Collective robotics:From social insects to robots,” Adapt. Behav.,vol. 2, no. 2, pp. 189–218, Sep. 1993.[12] C. Kube and E. Bonabeau, “Cooperative transport by ants and robots,” Robot. Auton. Syst., vol. 30,no. 1, pp. 85–101, 2000. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S0921889099000664[13] M. J. B. Krieger, J.-B. Billeter, and L. Keller,“Ant-like task allocation and recruitment in cooperative robots,” Nature, vol. 406, no. 6799,pp. 992–995, Aug. 2000.[14] A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella, “Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment,” Autonom. Robots, vol. 11, no. 2, pp. 149–171,2001.[15] W. Agassounon, A. Martinoli, and K. Easton,“Macroscopic modeling of aggregationexperiments using embodied agents in teams of constant and time-varying sizes,” Auton. Robots,vol. 17, nos. 2–3, pp. 163–192, Sep. 2004.[16] M.Wilson, C. Melhuish, A. B. Sendova-Franks, and S. Scholes, “Algorithms for building annular structures with minimalist robots inspired by brood sorting in ant colonies,” Auton. Robots, vol. 17, nos. 2–3, pp. 115–136, Sep. 2004.[17] S. Garnier et al., “The embodiment of cockroach aggregation behavior in a group of micro-robots,”Artif. Life, vol. 14, no. 4, pp. 387–408, Oct. 2008.[18] J. Halloy et al., “Social integration of robots into groups of cockroaches to control self-organized choices,” Science, vol. 318, no. 5853, pp. 1155–1158, 2007. [Online]. Available:https://science.sciencemag.org/content/318/5853/1155[19] S. Garnier, M. Combe, C. Jost, and G. Theraulaz,“Do ants need to estimate the geometrical properties of trail bifurcations to find an efficient route? A swarm robotics test bed,” PLoS Comput. Biol., vol. 9, no. 3, Mar. 2013, Art. no. e1002903.[20] A. Reina, G. Valentini, C. Fernández-Oto,M. Dorigo, and V. Trianni, “A design pattern for decentralised decision making,” PLoS ONE, vol. 10, no. 10, Oct. 2015, Art. no. e0140950.[21] G. Valentini, Achieving Consensus in Robot Swarms: Design and Analysis of Strategies for the Best-of-n Problem (Studies in Computational Intelligence). Cham, Switzerland: Springer, 2017.[22] P.-P. Grassé, “La reconstruction du nid et lescoordinations interindividuelles chezBellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs,”Insectes Sociaux, vol. 6, no. 1, pp. 41–80,Mar. 1959.[23] G. Theraulaz and E. Bonabeau, “A brief history of stigmergy,” Artif. Life, vol. 5, no. 2, pp. 97–116, 1999, doi: 10.1162/106454699568700.[24] S. Garnier, J. Gautrais, and G. Theraulaz,“The biological principles of swarm intelligence,”Swarm Intell., vol. 1, no. 1, pp. 3–31, Oct. 2007.[25] M. Dorigo et al., “Evolving self-organizing behaviors for a swarm-bot,” Auton. Robots,vol. 17, nos. 2–3, pp. 223–245, Sep. 2004.[26] F. Mondada, L. M. Gambardella, D. FloreanoS. Nolfi, J. Deneubourg, and M. Dorigo,“The cooperation of swarm-bots–physical interactions in collective robotics,” IEEE Robot.Autom. Mag., vol. 12, no. 2, pp. 21–28, Jun. 2005.[27] S. Nouyan, R. Groß,M. Bonani, F.Mondada, and M. Dorigo, “Teamwork in self-organized robot colonies,” IEEE Trans. Evol. Comput., vol. 13, no. 4, pp. 695–711, Aug. 2009.[28] M. Dorigo, M. Birattari, and R. O’Grady, “Swarmanoid, the movie,” in Proc. AAAI-11 Video,2011. [Online]. Available: http://www.youtube.com/watch?v=M2nn1X9Xlps[29] M. Dorigo et al., “Swarmanoid: A novel concept for the study of heterogeneous robotic swarms,”IEEE Robot. Autom. Mag., vol. 20, no. 4,pp. 60–71, Dec. 2013.[30] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal, “Kilobot: A low cost robot with scalable operations designed for collective behaviors,” Robot. Auton. Syst., vol. 62, no. 7, pp. 966–975,2014, reconfigurable Modular Robotics. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0921889013001474[31] M. Rubenstein, A. Cornejo and R. Nagpal, "Programmable self-assembly in a thousand-robot swarm", Science, vol. 345, no. 6198, pp. 795-799, 2014, [online] Available: https://science.sciencemag.org/content/345/6198/795.[32] G. Valentini, E. Ferrante, H. Hamann and M. Dorigo, "Collective decision with 100 kilobots: Speed versus accuracy in binary discrimination problems", Auton. Agents Multi-Agent Syst., vol. 30, no. 3, pp. 553-580, May 2016.[33] I. Slavkov et al., “Morphogenesis in robot swarms,” Sci. Robot., vol. 3, no. 25, 2018, Art. no. eaau9178. [Online]. Available: https:// robotics.sciencemag.org/content/3/25/eaau9178[34] M. S. Talamali, T. Bose, M. Haire, X. Xu, J. A. R. Marshall, and A. Reina, “Sophisticated collective foraging with minimalist agents: A swarm robotics test,” Swarm Intell., vol. 14, no. 1, pp. 25–56, Mar. 2020.[35] S. Kornienko, O. Kornienko, and P. Levi, “Minimalistic approach towards communication and perception in microrobotic swarms,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Aug. 2005, pp. 2228–2234.[36] G. Caprari and R. Siegwart, “Mobile micro-robots ready to use: Alice,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Aug.2005, pp. 3295–3300.[37] F. Mondada et al., “The e-puck, a robot designed for education in engineering,” in Proc. 9th Conf. Auton. Robot Syst. Competitions, 2009, pp. 59–65.[38] M. Duarte et al., “Evolution of collective behaviors for a real swarm of aquatic surface robots,” PLoS ONE, vol. 11, no. 3, Mar. 2016, Art. no. e0151834.[39] P. Zahadat and T. Schmickl, “Division of labor in a swarm of autonomous underwater robots by improved partitioning social inhibition,” Adapt. Behav., vol. 24, no. 2, pp. 87–101, Apr. 2016.[40] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and T. Vicsek, “Optimized flocking of autonomous drones in confined environments,” Sci. Robot., vol. 3, no. 20, 2018, Art. no. eaat3536. [Online]. Available: https://robotics.sciencemag. org/content/3/20/eaat3536[41] K. N. McGuire, C. De Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E. de Croon, “Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment,” Sci. Robot., vol. 4, no. 35, 2019, Art. no. eaaw9710. [Online]. Available: https://robotics. sciencemag.org/content/4/35/eaaw9710[42] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: A review from the swarm engineering perspective,” Swarm Intell., vol. 7, no. 1, pp. 1–41, Mar. 2013.[43] V. Trianni and A. Campo, “Fundamental collective behaviors in swarm robotics,” in Springer Handbook of Computational Intelligence, J. Kacprzyk and W. Pedrycz, Eds. Berlin, Germany: Springer, 2015, pp. 1377–1394, doi: 10.1007/978-3-662-43505-2_71. [44] G. Francesca and M. Birattari, “Automatic design of robot swarms: Achievements and challenges,” Frontiers Robot. AI, vol. 3, p. 29, Mar. 2016. [Online]. Available: https://www.frontiersin. org/article/10.3389/frobt.2016.00029[45] L. Garattoni and M. Birattari, “Swarm robotics,” in Wiley Encyclopedia of Electrical and Electronics Engineering, J. G. Webster, Ed. 2016, 10.1002/047134608X.W8312.[46] G. Valentini, E. Ferrante and M. Dorigo, "The best-of-n problem in robot swarms: Formalization state of the art and novel perspectives", Frontiers Robot. AI, vol. 4, Mar. 2017.[47] M. Massink, M. Brambilla, D. Latella, M. Dorigo, and M. Birattari, “On the use of bio-PEPA for modelling and analysing collective behaviours in swarm robotics,” Swarm Intell., vol. 7, nos. 2–3, pp. 201–228, Sep. 2013.[48] A. Prorok, N. Correll, and A. Martinoli, “Multi-level spatial modeling for stochastic distributed robotic systems,” Int. J. Robot. Res., vol. 30, no. 5, pp. 574–589, Apr. 2011.[49] K. Elamvazhuthi and S. Berman, “Mean-field models in swarm robotics: A survey,” Bioinspiration Biomimetics, vol. 15, no. 1, 2019, Art. no. 015001, doi: 10.1088/1748-3190/ab49a4.[50] V. Trianni, “Evolutionary swarm robotics,” in Evolving Self-Organising Behaviours in Groups of Autonomous Robots (Studies in Computational Intelligence), vol. 108. Berlin, Germany: Springer-Verlag, 2008.[51] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß, “Self-organized aggregation without computation,” Int. J. Robot. Res., vol. 33, no. 8, pp. 1145–1161, 2014.[52] A. Ozdemir, M. Gauci, S. Bonnet, and R. Groß, “Finding consensus without computation,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1346–1353, Jul. 2018.[53] G. Francesca et al., “AutoMoDe-chocolate: Automatic design of control software for robot swarms,” Swarm Intell., vol. 9, nos. 2–3, pp. 125–152, Sep. 2015.[54] E. Ferrante, A. E. Turgut, E. Duéñez-Guzmán, M. Dorigo, and T. Wenseleers, “Evolution of self-organized task specialization in robot swarms,” PLOS Comput. Biol., vol. 11, no. 8, Aug. 2015, Art. no. e1004273.[55] M. Brambilla, A. Brutschy, M. Dorigo, and M. Birattari, “Property-driven design for robot swarms: A design method based on prescriptive modeling and model checking,” ACM Trans. Auton. Adapt. Syst., vol. 9, no. 4, pp. 17:1–17:28, 2015.[56] J. Werfel, K. Petersen, and R. Nagpa, “Designing collective behavior in a termite-inspired robot construction team,” Science, vol. 343, no. 6172, pp. 754–758, 2014. [Online]. Available: https:// science.sciencemag.org/content/343/6172/754[57] S. Garnier, J. Gautrais, M. Asadpour, C. Jost, and G. Theraulaz, “Self-organized aggregation triggers collective decision making in a group of cockroach-like robots,” Adapt. Behav., vol. 17, no. 2, pp. 109–133, Apr. 2009.[58] M. Sitti, Mobile Microrobotics. Cambridge, MA, USA: MIT Press, 2017.[59] A. Reina, A. J. Cope, E. Nikolaidis, J. A. R. Marshall, and C. Sabo, “ARK: Augmented reality for kilobots,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1755–1761, Jul. 2017.[60] G. Valentini et al., “Kilogrid: A novel experimental environment for the Kilobot robot,” Swarm Intell., vol. 12, no. 3, pp. 245–266, Sep. 2018.[61] W. Giernacki, M. Skwierczy´nski, W. Witwicki, P. Wro´nski, and P. Kozierski, “Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering,” in Proc. 22nd Int. Conf. Methods Models Autom. Robot. (MMAR), Aug. 2017, pp. 37–42.[62] N. Jacobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The use of simulation in evolutionary robotics,” in Proc. 3rd Eur. Conf. Adv. Artif. Life. Berlin, Germany: Springer-Verlag, 1995, pp. 704–720.[63] C. Pinciroli et al., “ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems,” Swarm Intell., vol. 6, no. 4, pp. 271–295, Dec. 2012.[64] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza, “Flightmare: A flexible quadrotor simulator,” 2020, arXiv:2009.00563. [Online]. Available: https://arxiv.org/abs/2009.00563[65] M. Birattari et al., “Automatic off-line design of robot swarms: A manifesto,” Frontiers Robot. AI, vol. 6, p. 59, Jul. 2019.[66] B. P. Gerkey and M. J. Matari´c, “A formal analysis and taxonomy of task allocation in multi-robot systems,” Int. J. Robot. Res., vol. 23, no. 9, pp. 939–954, Sep. 2004.[67] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task allocation problems with temporal and ordering constraints,” Robot. Auton. Syst., vol. 90, pp. 55–70, Apr. 2017. [Online]. Available: http://www.sciencedirect. com/science/article/pii/S0921889016306157[68] S. R. Hedberg, “Robots playing soccer? RoboCup poses a new set of challenges in intelligent distributed computing,” IEEE Concurrency, vol. 5, no. 4, pp. 13–17, Oct. 1997.[69] L. A. Nguyen, T. L. Harman, and C. Fairchild, “Swarmathon: A swarm robotics experiment for future space exploration,” in Proc. IEEE Int. Symp. Meas. Control Robot. (ISMCR), Sep. 2019, pp. B1-3-1–B1-3-4.[70] H. Hamann and H. Wörn, “A framework of space–time continuous models for algorithm design in swarm robotics,” Swarm Intell., vol. 2, nos. 2–4, pp. 209–239, Dec. 2008.[71] T. Vicsek and A. Zafeiris, “Collective motion,” Phys. Rep., vol. 517, nos. 3–4, pp. 71–140, Aug. 2012.[72] M. Coppola, J. Guo, E. Gill, and G. C. H. E. de Croon, “Provable self-organizing pattern formation by a swarm of robots with limited knowledge,” Swarm Intell., vol. 13, no. 1, pp. 59–94, Mar. 2019.[73] L. Lei, R. Escobedo, C. Sire, and G. Theraulaz, “Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish,” PLOS Comput. Biol., vol. 16, no. 3, Mar. 2020, Art. no. e1007194.[74] J. Krause, A. F. Winfield, and J.-L. Deneubourg, “Interactive robots in experimental biology,” Trends Ecol. Evol., vol. 26, no. 7, pp. 369–375, 2011. [Online]. Available: http://www. sciencedirect.com/science/article/pii/S016953 4711000851[75] S. Mitri, S. Wischmann, D. Floreano, and L. Keller, “Using robots to understand social behaviour,” Biol. Rev., vol. 88, no. 1, pp. 31–39, 2013, doi: 10.1111/j.1469-185X.2012.00236.x.[76] F. Bonnet et al., “Robots mediating interactions between animals for interspecies collective behaviors,” Sci. Robot., vol. 4, no. 28, 2019, Art. no. eaau7897. [Online]. Available: https:// robotics.sciencemag.org/content/4/28/eaau7897[77] H. Xie et al., “Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation,” Sci. Robot., vol. 4, no. 28, 2019, Art. no. eaav8006. [Online]. Available: https://robotics.sciencemag.org/content/4/28/ eaav8006[78] S. Kriegman, D. Blackiston, M. Levin, and J. Bongard, “A scalable pipeline for designing reconfigurable organisms,” Proc. Nat. Acad. Sci. USA, vol. 117, no. 4, pp. 1853–1859, 2020. [Online]. Available: https://www.pnas. org/content/117/4/1853[79] R. D. Leonardo et al., “Bacterial ratchet motors,” Proc. Nat. Acad. Sci. USA, vol. 107, no. 21, pp. 9541–9545, May 2010. [Online]. Available: https://www.pnas.org/content/107/21/9541[80] K. E. Peyer, L. Zhang, and B. J. Nelson, “Bio-inspired magnetic swimming microrobots for biomedical applications,” Nanoscale, vol. 5, no. 4, pp. 1259–1272, 2012. [Online]. Available: http://dx.doi.org/10.1039/C2NR32554C[81] I. Rabinowitch, M. Chatzigeorgiou, B. Zhao, M. Treinin, and W. R. Schafer, “Rewiring neural circuits by the insertion of ectopic electrical synapses in transgenic C. elegans,” Nature Commun., vol. 5, no. 1, 2014, Art. no. 4442. [Online]. Available: https://app.dimensions.ai/ details/publication/pub.1050134945 and https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4109004[82] M. Z. Miskin et al., “Electronically integrated, mass-manufactured, microscopic robots,” Nature, vol. 584, no. 7822, pp. 557–561, Aug. 2020.[83] N. Kumar, H. Soni, S. Ramaswamy, and A. K. Sood, “Flocking at a distance in active granular matter,” Nature Commun., vol. 5, no. 1, p. 4688, Dec. 2014.[84] M. Bär, R. Großmann, S. Heidenreich, and F. Peruani, “Self-propelled rods: Insights and perspectives for active matter,” Annu. Rev. Condens. Matter Phys., vol. 11, no. 1, pp. 441–466, Mar. 2020.[85] R. Jeanson and A. Weidenmüller, “Interindividual variability in social insects–proximate causes and ultimate consequences,” Biol. Rev., vol. 89, no. 3, pp. 671–687, 2014. [Online]. Available: https:// onlinelibrary.wiley.com/doi/abs/10.1111/brv.12074[86] I. D. Chase, “Social process and hierarchy formation in small groups: A comparative perspective,” Amer. Sociol. Rev., vol. 45, no. 6, pp. 905–924, 1980. [Online]. Available: http://www.jstor.org/stable/2094909[87] G. Theraulaz, E. Bonabeau, and J.-L. Deneubourg, “Self-organization of hierarchies in animal societies: The case of the primitively eusocial wasp Polistes dominulus Christ,” J. Theor. Biol., vol. 174, no. 3, pp. 313–323, 1995. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S0022519385701014[88] N. Mathews, A. L. Christensen, R. O’Grady, F. Mondada, and M. Dorigo, “Mergeable nervous systems for robots,” Nature Commun., vol. 8, no. 1, p. 439, Dec. 2017.[89] W. Zhu, M. Allwright, M. K. Heinrich, S. O˘guz, A. L. Christensen, and M. Dorigo, “Formation control of UAVs and mobile robots using self-organized communication topologies,” in Proc. 12th Int. Conf. Swarm Intell. (ANTS) (Lecture Notes in Computer Science), vol. 12421. Berlin, Germany: Springer, 2020, pp. 306–314.[90] A. Attanasi et al., “Finite-size scaling as a way to probe near-criticality in natural swarms,” Phys. Rev. Lett., vol. 113, Dec. 2014, Art. no. 238102, doi: 10.1103/PhysRevLett.113.238102.[91] M. A. Muñoz, “Colloquium: Criticality and dynamical scaling in living systems,” Rev. Mod. Phys., vol. 90, Jul. 2018, Art. no. 031001, doi: 10.1103/RevModPhys.90.031001.[92] D. S. Calovi, U. Lopez, P. Schuhmacher, H. Chaté, C. Sire, and G. Theraulaz, “Collective response to perturbations in a data-driven fish school model,” J. Roy. Soc. Interface, vol. 12, no. 104, 2015, Art. no. 20141362. [Online]. Available: https://royalsocietypublishing.org/doi/abs/ 10.1098/rsif.2014.1362[93] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of multiagent reinforcement learning,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 2, pp. 156–172, Mar. 2008.[94] E. Price et al., “Deep neural network-based cooperative visual tracking through multiple micro aerial vehicles,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3193–3200, Oct. 2018.[95] F. Magistri, D. Nardi, and V. Trianni, “Using prior information to improve crop/weed classification by MAV swarms,” in Proc. 11th Int. Micro Air Vehicle Competition Conf., Madrid, Spain, 2019, pp. 67–75.[96] E. R. Hunt and S. Hauert, “A checklist for safe robot swarms,” Nature Mach. Intell., vol. 2, no. 8, pp. 420–422, Aug. 2020.[97] F. Higgins, A. Tomlinson, and K. M. Martin, “Survey on security challenges for swarm robotics,” in Proc. 5th Int. Conf. Auton. Auton. Syst., 2009, pp. 307–312.[98] E. C. Ferrer, T. Hardjono, M. Dorigo, and A. S. Pentland, “Secure and secret cooperation in robotic swarms,” 2019, arXiv:1904.09266. [Online]. Available: https://arxiv.org/abs/ 1904.09266[99] V. Strobel, E. C. Ferrer, and M. Dorigo, “Blockchain technology secures robot swarms: A comparison of consensus protocols and their resilience to Byzantine robots,” Frontiers Robot. AI, vol. 7, p. 54, May 2020.[100] A. Prorok and V. Kumar, “Towards differentially private aggregation of heterogeneous robots,” in Proc. 13th Int. Symp. Distrib. Auton. Robotic Syst., R. Groß, A. Kolling, S. Berman, E. Frazzoli, A. Martinoli, F. Matsuno, and M. Gauci, Eds. Cham, Switzerland: Springer, 2018, pp. 587–601, doi: 10.1007/978-3-319-73008-0_41[101] V. Strobel, E. C. Ferrer, and M. Dorigo, “Managing Byzantine robots via blockchain technology in a swarm robotics collective decision making scenario,” in Proc. 17th Int. Conf. Auton. Agents Multiagent Syst. (AAMAS), M. Dastani, G. Sukthankar, E. André, and S. Koenig, Eds. Richland, SC, USA: International Foundation for Autonomous Agents and Multiagent Systems, 2018, pp. 541–549.[102] C. Bartneck, T. Belpaeme, F. Eyssel, T. Kanda, M. Keijsers, and S. Šabanovi´c, Human-Robot Interaction: An Introduction. Cambridge, U.K.: Cambridge Univ. Press, 2020.[103] D. S. Brown, M. A. Goodrich, S.-Y. Jung, and S. C. Kerman, “Two invariants of human swarm interaction,” J. Human-Robot Interact., vol. 5, no. 1, pp. 1–31, Aug. 2015.[104] A. Kolling, P. Walker, N. Chakraborty, K. Sycara, and M. Lewis, “Human interaction with robot swarms: A survey,” IEEE Trans. Human-Mach. Syst., vol. 46, no. 1, pp. 9–26, Feb. 2016.[105] J. Gautrais, C. Jost, R. Jeanson, and G. Theraulaz, “How individual interactions control aggregation patterns in gregarious arthropods,” Interact. Stud., vol. 5, no. 2, pp. 245–269, 2004. [Online]. Available: https://www.jbe-platform.com/ content/journals/10.1075/is.5.2.05gau[106] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, “Effective leadership and decision-making in animal groups on the move,” Nature, vol. 433, no. 7025, pp. 513–516, Feb. 2005.[107] A. Baronchelli, “The emergence of consensus: A primer,” Roy. Soc. Open Sci., vol. 5, no. 2, Feb. 2018, Art. no. 172189.[108] G. Podevijn, R. O’Grady, Y. S. G. Nashed, and M. Dorigo, “Gesturing at subswarms: Towards direct human control of robot swarms,” in Proc. 14th Annu. Conf. Towards Auton. Robotic Syst. (TAROS) (Lecture Notes in Computer Science), vol. 8069, A. Natraj, S. Cameron, C. Melhuish, and M. Witkowski, Eds., 2013, pp. 390–403.[109] J. Nagi, A. Giusti, L. M. Gambardella, and G. A. Di Caro, “Human-swarm interaction using spatial gestures,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Sep. 2014, pp. 3834–3841.[110] L. Mondada, M. E. Karim, and F. Mondada, “Electroencephalography as implicit communication channel for proximal interaction between humans and robot swarms,” Swarm Intell., vol. 10, no. 4, pp. 247–265, Dec. 2016.[111] G. Podevijn, R. O’Grady, N. Mathews, A. Gilles, C. Fantini-Hauwel, and M. Dorigo, “Investigating the effect of increasing robot group sizes on the human psychophysiological state in the context of human–swarm interaction,” Swarm Intell., vol. 10, no. 3, pp. 193–210, Sep. 2016.[112] G. Podevijn, R. O’Grady, C. Fantini-Hauwel, and M. Dorigo, “Human responses to stimuli produced by robot swarms—The effect of the reality-gap on psychological state,” in Proc. 13th Int. Symp. Distrib. Auto. Robotic Syst. (Springer Proceedings in Advanced Robotics), vol. 6, R. Groß, A. Kolling, S. Berman, E. Frazzoli, A. Martinoli, F. Matsuno, and M. Gauci, Eds. Cham, Switzerland: Springer, 2018, pp. 531–543.[113] C. Nam, P. Walker, H. Li, M. Lewis, and K. Sycara, “Models of trust in human control of swarms with varied levels of autonomy,” IEEE Trans. HumanMach. Syst., vol. 50, no. 3, pp. 194–204,Jun.2020.[114] M. Dorigo, G. Theraulaz, and V. Trianni, “Reflections on the future of swarm robotics,” Sci. Robot., vol. 5, no. 49, Dec. 2020, Art. no. eabe4385.[115] M. Dorigo and E. Sahin, Eds., “Special issue on swarm robotics,” Auton. Robots, vol. 17, nos. 2–3, pp. 111–246, Sep. 2004.[116] G.-Z. Yang et al., “The grand challenges of science robotics,” Sci. Robot., vol. 3, no. 14, 2018, Art. no. eaar7650. [Online]. Available: https:// robotics.sciencemag.org/content/3/14/eaar7650[117] S. Kazadi, “Swarm engineering,” Ph.D. dissertation, California Inst. Technol., Pasadena, CA, USA, 2000.[118] M. Li et al., “Generating swarm solution classes using the Hamiltonian method of swarm design,” in Proc. 9th Int. Conf. Agents Artif. Intell., vol. 2. Setúbal, Portugal: SciTePress, 2017, pp. 145–152.[119] A. Renzaglia, L. Doitsidis, A. Martinelli, and E. B. Kosmatopoulos, “Multi-robot three-dimensional coverage of unknown areas,” Int. J. Robot. Res., vol. 31, no. 6, pp. 738–752, May 2012.[120] W. Hönig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme, and N. Ayanian, “Trajectory planning for quadrotor swarms,” IEEE Trans. Robot., vol. 34, no. 4, pp. 856–869, Aug. 2018.[121] W. Hönig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian, “Persistent and robust execution of MAPF schedules in warehouses,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1125–1131, Apr. 2019.[122] R. R. Negenborn and J. M. Maestre, “Distributed model predictive control: An overview and roadmap of future research opportunities,” IEEE Control Syst., vol. 34, no. 4, pp. 87–97, Aug. 2014.[123] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory generation with distributed model predictive control for multi-robot motion planning,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 604–611, Apr. 2020.[124] H. Hamann and A. Reina, “Scalability in computing and robotics,” 2020, arXiv:2006.04969. [Online]. Available: http://arxiv.org/abs/2006.04969[125] D. Albani, T. Manoni, D. Nardi, and V. Trianni, “Dynamic UAV swarm deployment for non-uniform coverage,” in Proc. 17th Int. Conf. Auton. Agents MultiAgent Syst. (AAMAS), 2018, pp. 523–531.[126] N. Correll and A. Martinoli, “Multirobot inspection of industrial machinery,” IEEE Robot. Autom. Mag., vol. 16, no. 1, pp. 103–112, Mar. 2009.[127] J. J. Dawkins, F. L. Crabbe, and D. Evangelista, “Deployment and flight operations of a large scale UAS combat swarm: Results from DARPA service academies swarm challenge,” in Proc. Int. Conf. Unmanned Aircr. Syst. (ICUAS), Jun. 2018, pp. 1271–1278.[128] G. C. Messenger, “Radiation hardening,” in AccessScience. McGraw-Hill, 2020. [Online]. Available: https://www.accessscience.com/ content/566850[129] T. M. Roehr, F. Cordes, and F. Kirchner, “Reconfigurable integrated multirobot exploration system (RIMRES): Heterogeneous modular reconfigurable robots for space exploration,” J. Field Robot., vol. 31, no. 1, pp. 3–34, 2014. [Online]. Available: https://onlinelibrary.wiley. com/doi/abs/10.1002/rob.21477[130] C. Pinciroli et al., “Self-organizing and scalable shape formation for a swarm of pico satellites,” in Proc. NASA/ESA Conf. Adapt. Hardw. Syst., Los Alamitos, CA, USA: IEEE Computer Society Press, Jun. 2008, pp. 57–61.[131] M. Waibel, B. Keays, and F. Augugliaro, “Drones shows: Creative potential and best practices,” Verity Studios, Zurich, Switzerland, White Paper, Jan. 2017.[132] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. Beardsley, “Image and animation display with multiple mobile robots,” Int. J. Robot. Res., vol. 31, no. 6, pp. 753–773, May 2012.[133] M. Le Goc, L. H. Kim, A. Parsaei, J.-D. Fekete, P. Dragicevic, and S. Follmer, “Zooids: Building blocks for swarm user interfaces,” in Proc. 29th Annu. Symp. User Interface Softw. Technol. New York, NY, USA: Association for Computing Machinery, Oct. 2016, p. 97.[134] M. Alhafnawi, S. Hauert, and P. O’Dowd, “Robotic canvas: Interactive painting onto robot swarms,” in Proc. Conf. Artif. Life, 2020, pp. 163–170.[135] E. Tsykunov, R. Agishev, R. Ibrahimov, L. Labazanova, A. Tleugazy, and D. Tsetserukou, “SwarmTouch: Guiding a swarm of micro-quadrotors with impedance control using a wearable tactile interface,” IEEE Trans. Haptics, vol. 12, no. 3, pp. 363–374, Jul. 2019.[136] W. Hönig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian, “Mixed reality for robotics,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2015, pp. 5382–5387.[137] S. Jeon et al., “Magnetically actuated microrobots as a platform for stem cell transplantation,” Sci. Robot., vol. 4, no. 30, May 2019, Art. no. eaav4317.[138] X. Dong and M. Sitti, “Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms,” Int. J. Robot. Res., vol. 39, no. 5, 2020, Art. no. 027836492090310.
(参考文献可上下滑动查看)
原文链接:
https://ieeexplore.ieee.org/abstract/document/9460560
复杂科学最新论文
集智斑图顶刊论文速递栏目上线以来,持续收录来自Nature、Science等顶刊的最新论文,追踪复杂系统、网络科学、计算社会科学等领域的前沿进展。现在正式推出订阅功能,每周通过微信服务号「集智斑图」推送论文信息。扫描下方二维码即可一键订阅:
推荐阅读
点击“阅读原文”,追踪复杂科学顶刊论文