环路研究工具的应用,比如在不同的生物和神经区域用电子显微镜和跨突触示踪等方法,可以获得很多数据以探究神经环路构架的共同规律,记录神经元活动和干扰环路中的关键因素可以帮助了解它们在信息处理和动物行为方面的功能。作者认为,未来一个关键的挑战是不同的环路模式和结构如何跨尺度运行?在跨物种的关键环路结构中,研究“字”和“词语”是如何组合成“句子”更有价值,而使用单细胞转录组学对同源大脑区域的不同神经元类型进行比较也是开始相关研究的一个可行的方法。对神经环路的结构、功能、发育和进化的综合研究,将使我们能够超越单个神经元的水平,深入了解神经系统,这也将启发新的人工神经网络,可能有一天实现通用的人工智能。 原文链接:https:// doi .org/ 10.1126/science.abg7285
参考文献
【1】 S. R. Cajal,Histology of the Nervous System of Man and Vertebrates(Oxford Univ. Press, 1995). 【2】C. D. Gilbert, T. N. Wiesel, Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature280, 120–125 (1979).【3】D. J. Felleman, D. C. Van Essen, Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex1, 1–47 (1991).【4】 Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature521, 436–444 (2015).【5】C. S. Sherrington, Remarks on some aspects of reflex inhibition.Proc. R. Soc. London Ser. B97, 519–545 (1925).【6】J. S. Isaacson, M. Scanziani, How inhibition shapes cortical activity.Neuron72, 231–243 (2011).【7】K. A. Martin, P. Somogyi, D. Whitteridge, Physiological and morphological properties of identified basket cells in the cat’s visual cortex.Exp. Brain Res.50, 193–200 (1983).【8】X. Y. Jiet al., Thalamocortical innervation pattern in mouse auditory and visual cortex: Laminar and cell-type specificity. Cereb. Cortex26, 2612–2625 (2016).【9】L. Roux, G. Buzsáki, Tasks for inhibitory interneurons in intact brain circuits. Neuropharmacology88, 1 0–23 (2015).【10】S. W. Kuffler, Discharge patterns and functional organization of mammalian retina.J. Neurophysiol.16, 3 7–68 (1953).【11】H. B. Barlow, Summation and inhibition in the frog’s retina.J. Physiol.119, 6 9–88 (1953).【12】S. Grillner, Biological pattern generation: The cellular and computational logic of networks in motion.Neuron52, 751–766 (2006).【13】C. B. Saper, P. M. Fuller, N. P. Pedersen, J. Lu, T. E. Scammell, Sleep state switching.Neuron68, 1023–1042 (2010).【14】F. Weber, Y. Dan, Circuit-based interrogation of sleep control.Nature538, 5 1–59 (2016)【15】I. E. Wang, T. R. Clandinin, The influence of wiring economy on nervous system evolution.Curr. Biol.26, R1101–R1108 (2016).【16】R. Axel, The molecular logic of smell.Sci. Am.273, 154–159(1995).【17】L. B. Vosshall, R. F. Stocker, Molecular architecture of smell and taste inDrosophila.Annu. Rev. Neurosci.30, 505–533(2007).【18】L. Luo,Principles of Neurobiology(CRC Press/Garland Science, ed. 2, 2020).【19】A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks.In Proc.Adv. Neural Inf. Process. Syst.25, 1 0 9 0–1098 (2012).【20】D. Marr, Simple memory: A theory for archicortex.Philos.Trans. R. Soc. Lond. B Biol. Sci.262, 2 3–81 (1971)【21】J. P. Neunuebel, J. J. Knierim, CA3 retrieves coherent representations from degraded input: Direct evidence for CA3 pattern completion and dentate gyrus pattern separation.Neuron81, 416–427 (2014)【22】K. T. Beieret al., Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping.Cell 162, 622–634 (2015).【23】J. Kohlet al., Functional circuit architecture underlying parental behaviour.Nature556, 326–331 (2018).【24】L. W. Swanson,Brain Architecture(Oxford Univ. Press, ed. 2,2012).【25】J. H. Kaas,Evolutionary Neuroscience(Elsevier, ed. 2, 2020).【26】G. H. Jacobs, J. Nathans, The evolution of Primate color vision.Sci. Am.300, 5 6–63 (2009)【27】M. A. Toscheset al., Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science360, 881–888 (2018).【28】R. D. Hodgeet al., Conserved cell types with divergent features in human versus mouse cortex.Nature573, 6 1–68 (2019).【29】A. L. Kolodkin, M. Tessier-Lavigne, Mechanisms and molecules of neuronal wiring: A primer. Cold Spring Harb.Perspect. Biol.3, a001727 (2011)【30】J. R. Sanes, S. L. Zipursky, Synaptic specificity, recognition molecules, and assembly of neural circuits. Cell181, 536–556(2020).【31】W. J. Joo, L. B. Sweeney, L. Liang, L. Luo, Linking cell fate, trajectory choice, and target selection: Genetic analysis of Sema-2b in olfactory axon targeting. Neuron78, 673–686 (2013)【32】D. T. Pedericket al., Reciprocal repulsions instruct the precise assembly of parallel hippocampal networks. Science 372, 1068–1073 (2021).【33】G. G. Turrigiano, The dialectic of Hebb and homeostasis. Philos. Trans. R. Soc. London Ser. B372, 20160258 (2017).【34】J. Lu, J. C. Tapia, O. L. White, J. W. Lichtman, The interscutularis muscle connectome.PLOS Biol.7, e32(2009).【35】S. J. Caron, V. Ruta, L. F. Abbott, R. Axel, Random convergence of olfactory inputs in theDrosophilamushroom body.Nature497, 113–117 (2013).【36】Z. Zhenget al., A complete electron microscopy volume of the brain of adult Drosophilamelanogaster. Cell 174, 730–743.e22 (2018).【37】S. Serizawaet al., A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting.Cell 127, 1057–1069 (2006).【38】T. McLaughlin, C. L. Torborg, M. B. Feller, D. D. O’Leary, Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development.Neuron 40, 1 1 4 7–1160 (2003).