自生成结构读书会启动:剖解生命、意识与智能的核心结构
导语
“有人说剥洋葱会让你流泪,是因为你一层一层剥开后发现他其实是没有心的。”——杨宗纬《洋葱》
生命是有心(意识)的,但当你一层层剥开生命的组织,却只有心脏而没有一颗“心灵”;打开大脑皮层看到一个个神经元,却看不到“意识”。然而,生命与意识都具有"自我生成"的能力,生命自发从非生命中生成,意识自发从生命中生成。更惊人的是,生命与意识的自我生成结构似乎很相似。如果这个假设成立,那么最可能的备选结构会是什么呢?
为了更深入地认识复杂活系统的自生成结构,集智科学家小木球(仇玮祎)联合周理乾、王东、董达、刘宇、苑明理、傅渥成、章彦博等科学哲学、计算机科学、物理学和生物化学等学科的一线研究者共同发起组织《自生成结构系列读书会》。其中第一季《共识——自生成结构与自复制自动机的研究背景》,将自2021年11月20日开始,其后拟于每周五晚19:00-21:00线上举行,预计持续12周。11月20日第一期将讨论自指的几种不同结构、其与生命意识的自生成结构间的关系,以及本读书会的框架概述。
读书会详情及报名方式见后文。
1.「自生成结构」系列读书会研究背景
1.「自生成结构」系列读书会研究背景
自复制自动机、自催化和自创生理论这三个与“自指”结构密切相关又相互游离的理论,是埋藏在计算机科学、生物化学和认知科学这三个学科中几乎相互隔离的、指向解决不同问题的“古老”理论。它们之间有什么内在联系,是否在结构上具有“同构”的潜质,它们的碰撞与交集是否能对解决生命与意识的本质问题带来深刻的启发?如果找到了这样的“同构”,我们可能就不再是层层剥开生命组织来发现“心”,而是从生命组织的自生成过程中发现“心”的本质结构。这是否意味着,我们能进一步刻画甚至从头构建生命和意识呢?
背景
上世纪70年代以来,对复杂系统的研究分化为两条不同的研究进路。
一条方向,是以统计物理为思维范式,分布式涌现为典型现象,非线性动力学为数学基础,伊辛模型和多主体模拟为计算机模型,试图发现复杂系统宏观性质之下统一的简单原则。以此掀起了复杂性研究的新兴潮流,并由于数据和网络科学、基于分布式神经网络的人工智能兴起,延续至今蓬勃发展。
另一条线路,以哥德尔定理和自指结构为核心,以结构分析为思维范式,在图灵机模型和冯·诺依曼理论为基础构建出模拟人脑的电子计算机之后,掀起了前所未有的信息革命。这条以自指和自生成结构为内核的思想和研究线路,将人类社会带入了一个新的历史阶段;然而其后却未能继续发扬光大,反而成为了复杂性研究中少有人深入触及的边缘问题,或者说一条“沉默的暗线”。
虽是暗线,这条研究范式在不同领域有所进展和成长。计算机科学中,是以自复制自动机为核心理论的人工生命研究;在系统生物学和生物化学中,是以自催化和超循环为核心的生命起源理论;在科学哲学及社会学领域,是以自创生理论为核心的生成性研究;在数理和逻辑领域,还有以自指为核心的形式结构与语义逻辑等等方向向前推进。
我们发现,这些学科对于自指结构及其在生命、智能创生中的作用,有着不同的认识层次和语言隔阂。例如在科学哲学中,以自指为核心的层次生成几乎是一个共识;而在计算机和物理学中,正反馈及其在网络中的生成动力学仍旧是主流研究方向;在生物学中,纵然拥有生命这一最丰富的材料宝库和思维源泉,以中心法则为基础的还原论思维仍然占据统治地位,而以自生成结构为核心的生命起源研究几乎是苟延残喘。当我们把这些学科放在一起时,冲突和火花迸发出来……
2.「自生成结构」系列读书会
2.「自生成结构」系列读书会
本系列读书会希望通过交流与共同学习,追寻不同学科中与自指相关的理论前沿,以“自生成结构”为核心建立跨学科共识,通过辨析主体涌现与分布式涌现在复杂活系统形成中的角色,探索对自指与自生成结构的定性认识和定量刻画方法,探索对生命及类生命的活系统复杂性的全新认识。
读书会的目标为:1.共性与定义;2.描述与刻画;3.复杂性度量。
按照该目标,「自生成结构」读书会将分为三季,以探讨生命复杂系统/类生命系统的“自生成结构”为核心,初步按照以下框架发起读书会。三季读书会均在线上进行,预期将持续一年左右。
第一季:共识——自生成结构与自复制自动机的研究背景 背景与共识 自复制自动机理论
第二季:结构——自指与自生成结构的定性理论 自指与自催化 自指与自创生 自指与自我意识
第三季:计算——对涌现和自生成结构的定量刻画 复杂性度量——涌现和层级的度量 复杂性度量——基于主体的复杂性度量
3. 《第一季:共识——自生成结构与
自复制自动机的研究背景》读书会启动报名
3. 《第一季:共识——自生成结构与
自复制自动机的研究背景》读书会启动报名
《第一季:共识——自生成结构与自复制自动机的研究背景》暂定框架:
自指与主体涌现——自生成结构综述
当代生物学哲学中生命本质的理论源流
CAS系统与J.England的理论
生命的涌现及与主体涌现的区别
生命起源的研究前沿
自复制自动机理论-冯·诺依曼的5堂课
自复制自动机的程序实现
人工生命的假说和模型
参与方式
本读书会适合的参与对象:
基于复杂系统相关学科研究,对生命、意识本质相关话题有浓厚兴趣的科研工作者;
能熟练阅读英文文献,并对复杂科学充满激情,对世界的本质充满好奇的探索者;
欢迎基于读书会所列文本和文献的具体探讨,欢迎进一步提供适合的文献和主题,欢迎提供话题和分享;
本读书会谢绝的参与对象:
运行模式
主题形式:
本季主题读书会按照内容与暂定框架,贯次开展;
每 1 周由 1-2 名读书会成员领读相关论文,进行线上会议,与会者可以广泛参与讨论(以 PPT 讲解的形式,直播间互动交流);
本季主题读书会最后一期为圆桌会议形式的主题讨论;
本季读书会(12期)保证金共计 299 元/人。
满足如下条件之一者全额退款(本季读书会结束后统一退费):
贡献了一次讲座(1小时左右)内容的(需要提前向主持人申请并通过试讲);
完成了一篇以上读书笔记写作,并在集智俱乐部公众号分享。(读书笔记标准:字数3千以上,图文并茂,具体请参照此文:前沿综述:大脑结构网络、功能网络和网络控制中的物理学);
认真完成集智百科相应的编撰任务,经过集智百科团队审核通过,并达到299积分。(详情见激励制度)
满足以下条件之一的不仅可以全额退款,还有额外奖励:
由读书会内容启发,产生了靠谱的新产品创意,并在读书会结束 2 个月内提交了详细的产品策划方案,并通过了集智俱乐部组织的相应考核答辩的;
由读书会内容启发,萌发了科研论文创意,在读书会结束 2 个月内完成初稿,并在最终的论文成果中致谢集智俱乐部的(需要发表在SCI等核心刊物上)。
报名步骤
第二步:填写信息后,进入付款流程,提交保证金299元。(符合退费条件后可退费)
第三步:添加负责人微信,拉入对应的读书会讨论群。
4. 发起人介绍
4. 发起人介绍
5. 参考文献及三季读书会内容介绍
5. 参考文献及三季读书会内容介绍
第一季:共识——自生成结构与自复制自动机的研究背景
Bedau, M. (2008). What is Life? https://www.cambridge.org/core/books/abs/the-nature-of-life/what-is-life-selections/295D60C5FE17B13DA3293FDB02A5370D A Companion to the Philosophy of Biology[M]. John Wiley & Sons, 2010. https://www.google.com/books?hl=zh-CN&lr=&id=eg2283WZSkAC&oi=fnd&pg=PR11&dq=A+Companion+to+the+Philosophy+of+Biology&ots=f2z87Ap0Hx&sig=wYiUJ4Lfzr_7nwehqQ0iFCmpBqY Weber B H. On the emergence of living systems[J]. Biosemiotics, 2009, 2(3): 343-359. https://link.springer.com/content/pdf/10.1007/s12304-009-9060-6.pdf Bitch, L. & Green, S. (2018). Is Defining Life Pointless. Synthese, 2018, 195: 3919-3946. https://doi.org/10.1007/s11229-017-1397-9生物学哲学中关于生命本质问题的概览。
England J L. Statistical physics of self-replication[J]. The Journal of chemical physics, 2013, 139(12): 09B623_1.https://arxiv.org/abs/1209.1179 (自复制过程中的最小熵产生的定量分析) England J L. Dissipative adaptation in driven self-assembly[J]. Nature nanotechnology, 2015, 10(11): 919-923. https://www.englandlab.com/uploads/7/8/0/3/7803054/nnano.2015.250__1_.pdf Holland J H. Signals and boundaries: Building blocks for complex adaptive systems[M]. Mit Press, 2012. https://books.google.com/books?hl=zh-CN&lr=&id=jUy9AAAAQBAJ&oi=fnd&pg=PR5&dq=Signals+and+boundaries:+Building+blocks+for+complex+adaptive+systems.+&ots=yasc03fBh2&sig=4nkwnzA1QoX2uwf7xF6w2J4KesA Holland J H. Hidden order: How adaptation builds complexity[M]. Addison Wesley Longman Publishing Co., Inc., 1996. https://dl.acm.org/doi/abs/10.5555/225764
Boogerd F C, Bruggeman F J, Richardson R C, et al. Emergence and its place in nature: A case study of biochemical networks[J]. Synthese, 2005, 145(1): 131-164. https://link.springer.com/article/10.1007/s11229-004-4421-9(突现/涌现概念面临根本困难,这篇论文利用systems biology的研究成果,展示了突现的可能性) Brian P. Mclaughlin.“The Rise and Fall of British Emergentism”, In Ansgar Beckermann, H. Flohr & Jaegwon Kim (eds.),Emergence or Reduction?: Essays on the Prospects of Nonreductive Physicalism. W. De Gruyter. pp. 49-93 (1992) DOI: 10.1515/9783110870084.49(对早期突现理论的综述) https://philpapers.org/rec/MCLTRA-4 Bedau M A. Is weak emergence just in the mind?[J]. Minds and Machines, 2008, 18(4): 443-459. DOI: 10.1007/s11023-008-9122-6(使用不可压缩的计算性来定义突现) https://link.springer.com/article/10.1007/s11023-008-9122-6
Preiner M, Asche S, Becker S, et al. The future of origin of life research: bridging decades-old divisions[J]. Life, 2020, 10(3): 20. https://www.mdpi.com/2075-1729/10/3/20 详细综述了生命起源领域的各个方面,包括实验、理论、模拟等
冯·诺依曼《自复制自动机》翻译:东方和尚,点评:张江。见《自指机器的奥秘》等文
Chan B W C. Lenia-biology of artificial life[J]. arXiv preprint arXiv:1812.05433, 2018. https://arxiv.org/abs/1812.05433 Gershenson C, Trianni V, Werfel J, et al. Self-organization and artificial life[J]. Artificial Life, 2020, 26(3): 391-408. https://ieeexplore.ieee.org/abstract/document/9204917/ Lehman J, Clune J, Misevic D, et al. The surprising creativity of digital evolution: A collection of anecdotes from the evolutionary computation and artificial life research communities[J]. Artificial life, 2020, 26(2): 274-306. https://doi.org/10.1162/artl_a_00319
第二季:结构——自指与自生成结构的定性理论
Kauffman S A. The origins of order: Self-organization and selection in evolution[M]. Oxford University Press, USA, 1993. https://scholar.google.com/citations?view_op=view_citation&hl=zh-CN&user=yoPM0F8AAAAJ&citation_for_view=yoPM0F8AAAAJ:AXPGKjj_ei8C Kauffman S, Kauffman S A. At home in the universe: The search for laws of self-organization and complexity[M]. Oxford University Press, USA, 1995. https://scholar.google.com/citations?view_op=view_citation&hl=zh-CN&user=yoPM0F8AAAAJ&citation_for_view=yoPM0F8AAAAJ:9vf0nzSNQJEC
RAF理论(自我复制网络),比较新的总结性文章 Hordijk W, Steel M. Chasing the tail: The emergence of autocatalytic networks[J]. Biosystems, 2017, 152: 1-10. https://www.sciencedirect.com/science/article/abs/pii/S030326471630274X COT的完整理论文章 Dittrich P, Di Fenizio P S. Chemical organisation theory[J]. Bulletin of mathematical biology, 2007, 69(4): 1199-1231. https://link.springer.com/article/10.1007/s11538-006-9130-8
1)从康德到目的论的自然化 当代生物学与生物学哲学的经典文集 Bedau M A, Cleland C E. The Nature of Life[M]. Cambridge University Press, 2018. Ernst Mayr关于生物学目的论的经典论文 Ernst Mayr. Teleological and teleonomic, a new analysis[M]//Methodological and historical essays in the natural and social sciences. Springer, Dordrecht, 1974: 91-117. https://doi.org/10.1007/978-94-010-2128-9_6. 对康德内在目的论的自然主义理解 Weber A, Varela F J. Life after Kant: Natural purposes and the autopoietic foundations of biological individuality[J]. Phenomenology and the cognitive sciences, 2002, 1(2): 97-125. https://link.springer.com/article/10.1023/A:1020368120174 2)目的动力学与自生成 自生成模型及其与Chemoton、protocell、AL的比较 Deacon T W. Reciprocal linkage between self-organizing processes is sufficient for self-reproduction and evolvability[J]. Biological Theory, 2006, 1(2): 136-149. https://link.springer.com/article/10.1162/biot.2006.1.2.136 系统论述目的动力学与自生胞(autogen) Peterson G R. Terrence Deacon, Incomplete Nature: How Mind Emerged from Matter .New York: WW Norton, 264-325. 2012 (提供中译文) https://www.tandfonline.com/doi/full/10.1080/14746700.2013.836898 提供了区别目的动力学与热力学和自组织的标准,并讨论了三种动力学形式的层次依赖关系。 Terrence Deacon. Teleodynamics: Specifying the dynamical principles of intrinsically end-directed processes. Proceedings of IAISAE, International Conference on Thermodynamics 2.0, June 22-24, 2020. Worcester, MA, USA. ICT2.0: 2020-W1xx. (领读人提供)
Preiner M, Asche S, Becker S, et al. The future of origin of life research: bridging decades-old divisions[J]. Life, 2020, 10(3): 20. https://www.mdpi.com/2075-1729/10/3/20
1).自创生: Varela F, Maturana H. Autopoiesis and Cognition: The realization of the Living[J]. 1980. (阅读章节:全文快速浏览,获得整体印象 https://philpapers.org/rec/MATAAC-3 Thompson E. Life and mind: From autopoiesis to neurophenomenology. A tribute to Francisco Varela[J]. Phenomenology and the cognitive Sciences, 2004, 3(4): 381-398. https://doi.org/10.1023/B:PHEN.0000048936.73339.dd 中译:《生命中的心智:生物学、现象学和心智科学》. (2013). 李恒威, 李恒熙, 徐燕译. 杭州: 浙江大学出版社)(阅读章节:第5章“自创生:生命的组织”;6.2. “自创生与目的论”;8.5. “生物学的自然主义”) https://book.douban.com/subject/25660918/ Varela F. Principles of biological autonomy[J]. 1979. (阅读章节:全文快速浏览,获得整体印象) https://philpapers.org/rec/VARPOB
2).(M,R)系统 Rosen R. A relational theory of biological systems[J]. The bulletin of mathematical biophysics, 1958, 20(3): 245-260. Doi: 10.1007/BF02478302https://link.springer.com/article/10.1007%2FBF02478302 Rosen R. Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life[M]. Columbia University Press, 1991.(阅读章节:全文快速浏览,获得整体印象) https://books.google.com/books?hl=zh-CN&lr=&id=DR8L4snDnkIC&oi=fnd&pg=PR11&dq=+Life+itself:+A+comprehensive+inquiry+into+the+nature,+origin,+and+fabrication+of+life.+New+York,+NY:+Columbia+University+Press.&ots=jMDdPg_i22&sig=ieQA47VrRHigaj7PHVDG_dg1stE
3).自创生与(M, R)系统比较研究: Cornish-Bowden A, Cárdenas M L. Contrasting theories of life: historical context, current theories. In search of an ideal theory[J]. Biosystems, 2020, 188: 104063. https://www.sciencedirect.com/science/article/pii/S0303264719302151 Letelier J C, Cárdenas M L, Cornish-Bowden A. From L'Homme Machine to metabolic closure: steps towards understanding life[J]. Journal of Theoretical Biology, 2011, 286: 100-113. https://www.sciencedirect.com/science/article/pii/S0022519311003389 Letelier J C, Marın G, Mpodozis J. Autopoietic and (M, R) systems[J]. Journal of theoretical biology, 2003, 222(2): 261-272. https://www.sciencedirect.com/science/article/pii/S0022519303000341 Cárdenas M L, Letelier J C, Gutierrez C, et al. Closure to efficient causation, computability and artificial life[J]. Journal of Theoretical Biology, 2010, 263(1): 79-92. https://www.sciencedirect.com/science/article/pii/S0022519309005360(注:关于技巧讨论,可集中参见第4篇)
Eigen M, Schuster P. The hypercycle[J]. Naturwissenschaften, 1978, 65(1): 7-41. https://link.springer.com/article/10.1007/BF00420631
河本英夫《第三代系统论: 自生系统论》https://book.douban.com/subject/27102835/ H.Louie 和 Nomura对Rosen理论的发展,偏向科哲 Nomura T. Formal description of autopoiesis for analytic models of life and social systems[C]//Proc. 8th Int. Conf. Artificial Life (ALIFE VIII). 2002: 15-18. https://dl.acm.org/doi/10.5555/860295.860299
侯世达:GEB、心我论、我是个怪圈 https://book.douban.com/subject/30335756/ 皮尔斯:论符号 https://book.douban.com/subject/26220450/ 威利:符号自我 https://book.douban.com/subject/6790636/ 郝柏林:实用符号动力学与混沌 Applied Symbolic Dynamics and Chaos https://book.douban.com/subject/26678718/ Cariani P. The semiotics of cybernetic percept-action systems[J]. International Journal of Signs and Semiotic Systems (IJSSS), 2011, 1(1): 1-17. https://www.igi-global.com/article/semiotics-cybernetic-percept-action-systems/52600 Cariani P. Symbols and dynamics in the brain[J]. Biosystems, 2001, 60(1-3): 59-83. https://www.sciencedirect.com/science/article/abs/pii/S0303264701001083 Tani J. Exploring robotic minds: actions, symbols, and consciousness as self-organizing dynamic phenomena[M]. Oxford University Press, 2016. https://books.google.com/books?hl=zh-CN&lr=&id=NtooDQAAQBAJ&oi=fnd&pg=PP1&dq=Exploring+Robotic+Minds:+Actions,+Symbols,+and+Consciousness+as+Self-Organizing+Dynamic+Phenomena&ots=Xj2DuNU1ZB&sig=pyyBCqAca_1-sYmBgeOTXeJS5qE
Safron A. An Integrated World Modeling Theory (IWMT) of consciousness: combining integrated information and global neuronal workspace theories with the free energy principle and active inference framework; Toward solving the hard problem and characterizing agentic causation[J]. Frontiers in artificial intelligence, 2020, 3: 30. https://www.frontiersin.org/articles/10.3389/frai.2020.00030/full Safron A. Integrated world modeling theory (IWMT) revisited[J]. 2019. https://psyarxiv.com/kjngh/download?format=pdf Friston K. The free-energy principle: a unified brain theory?[J]. Nature reviews neuroscience, 2010, 11(2): 127-138. https://www.nature.com/articles/nrn2787/boxes/bx1 Dehaene S, Changeux J P, Naccache L. The global neuronal workspace model of conscious access: from neuronal architectures to clinical applications[J]. Characterizing consciousness: From cognition to the clinic?, 2011: 55-84. https://link.springer.com/chapter/10.1007/978-3-642-18015-6_4 Friston K. Am I self-conscious?(Or does self-organization entail self-consciousness?)[J]. Frontiers in psychology, 2018, 9: 579. https://www.frontiersin.org/articles/10.3389/fpsyg.2018.00579/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_624802_69_Psycho_20180503_arts_A Kanai R, Chang A, Yu Y, et al. Information generation as a functional basis of consciousness[J]. Neuroscience of consciousness, 2019, 2019(1): niz016. https://academic.oup.com/nc/article-pdf/doi/10.1093/nc/niz016/31162573/niz016.pdf Manjaly Z M, Iglesias S. A computational theory of mindfulness based cognitive therapy from the “bayesian brain” perspective[J]. Frontiers in Psychiatry, 2020, 11: 404. https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00404/full Demekas D, Parr T, Friston K J. An investigation of the free energy principle for emotion recognition[J]. Frontiers in computational neuroscience, 2020, 14: 30. https://www.frontiersin.org/articles/10.3389/fncom.2020.00030/full
Schmidhuber J. Gödel machines: Towards a technical justification of consciousness[M]//Adaptive Agents and Multi-Agent Systems II. Springer, Berlin, Heidelberg, 2004: 1-23. https://doi.org/10.1007/978-3-540-32274-0_1 Steunebrink B R, Schmidhuber J Ã. Towards an actual gödel machine implementation: A lesson in self-reflective systems[M]//Theoretical Foundations of Artificial General Intelligence. Atlantis Press, Paris, 2012: 173-195. https://people.idsia.ch//~juergen/selfreflection.pdf F William Lawvere: Diagonal arguments and cartesian closed categories. In: Category theory, homology theory and their applications II, 1969. Reprints in Theory and Applications of Categories, No. 15, 2006, pp. 1–13. http://emis.matem.unam.mx/journals/TAC/reprints/articles/15/tr15.pdf Yanofsky N S. A universal approach to self-referential paradoxes, incompleteness and fixed points[J]. Bulletin of Symbolic Logic, 2003, 9(3): 362-386. https://www.cambridge.org/core/journals/bulletin-of-symbolic-logic/article/universal-approach-to-selfreferential-paradoxes-incompleteness-and-fixed-points/9C490EC9520C0C96AEEF06E59BFD428B Frumin, Massas: Diagonal arguments and Lawvere's theorem https://groupoid.moe/pdf/diagonal_argument.pdf
Marcolli M. Topological Model of Neural Information Networks[C]//International Conference on Geometric Science of Information. Springer, Cham, 2021: 623-633. http://www.its.caltech.edu/~matilde/TopModelsNeuralInfoNets.pdf 工程实现:Selfx: a self explorer https://doi.org/10.5281/zenodo.5196181
第三季:计算——对涌现与自生成结构的定量刻画
Furusawa C, Kaneko K. Formation of dominant mode by evolution in biological systems[J]. Physical Review E, 2018, 97(4): 042410. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.042410 Sakata A, Kaneko K. Dimensional reduction in evolving spin-glass model: correlation of phenotypic responses to environmental and mutational changes[J]. Physical Review Letters, 2020, 124(21): 218101. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.218101 Sato T U, Kaneko K. Evolutionary dimension reduction in phenotypic space[J]. Physical Review Research, 2020, 2(1): 013197. https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.013197 Tang Q Y, Hatakeyama T S, Kaneko K. Functional sensitivity and mutational robustness of proteins[J]. Physical Review Research, 2020, 2(3): 033452. https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033452 Tang Q Y, Kaneko K. Dynamics-Evolution Correspondence in Protein Structures[J]. Physical Review Letters, 2021, 127(9): 098103. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.098103
蔡汀《证明达尔文》 https://book.douban.com/subject/26282599/
Rosen 1988 - Effective process and natural law https://www.researchgate.net/publication/234782458_Effective_Processes_and_Natural_Law
Naoto Kataoka and Kunihiko Kaneko. Functional Dynamics. I: Articulation Process[J]. Physica D: Nonlinear Phenomena, 2000,138(3-4): 225–50. https://doi.org/10.1016/S0167-2789(99)00230-4. Naoto Kataoka and Kunihiko Kaneko. Functional Dynamics: II: Syntactic Structure[J]. Physica D: Nonlinear Phenomena, 2001,149(3): 174–196. https://doi.org/10.1016/S0167-2789(00)00203-7.
Sara Imari Walker. Evolutionary Transitions and Top-Down Causation[A]. Proceedings of the ALIFE 2012: The Thirteenth International Conference on the Synthesis and Simulation of Living Systems[C]. East Lansing, Michigan: ASME, 2012, 283-290. https://direct.mit.edu/isal/proceedings/alife2012/24/283/98663
度量复杂性的一个新理论(应用于化学分子等) Liu Y, Mathis C, Bajczyk M D, et al. Exploring and mapping chemical space with molecular assembly trees[J]. Science advances, 2021, 7(39): eabj2465. https://chemrxiv.org/engage/chemrxiv/article-details/60c75885ee301ce974c7b74e
E. P. Hoel, L. Albantakis, and G. Tononi. Quantifying Causal Emergence Shows That Macro Can Beat Microh[A]. Proceedings of the National Academy of Sciences[C], 2013, 110(49): 19790–19795. https://doi.org/10.1073/pnas.1314922110 Li S H, Wang L. Neural network renormalization group[J]. Physical review letters, 2018, 121(26): 260601. https://doi.org/10.1103/PhysRevLett.121.260601. Tononi G, Boly M, Massimini M, et al. Integrated information theory: from consciousness to its physical substrate[J]. Nature Reviews Neuroscience, 2016, 17(7): 450-461. https://doi.org/10.1038/nrn.2016.44. Sara Imari Walker. Evolutionary Transitions and Top-Down Causation[A]. Proceedings of the ALIFE 2012: The Thirteenth International Conference on the Synthesis and Simulation of Living Systems[C]. East Lansing, Michigan: ASME, 2012, 283-290. https://doi.org/10.1162/978-0-262-31050-5-ch038 侯世达:哥德尔、艾舍尔、巴赫——集异璧之大成[M].《哥德尔、艾舍尔、巴赫——集异璧之大成》翻译组,译. 商务印书馆, 1996. https://book.douban.com/subject/1291204/ Moloney N R. Complexity and criticality[M]. Imperial College Press, 2005. https://doi.org/10.1142/p365
6. 关于主办方和集智俱乐部读书会
6. 关于主办方和集智俱乐部读书会
点击“阅读原文”,即可报名读书会