Turing pattern 图灵斑图spatial pattern 空间斑图critical transition 临界转变tipping point 临界点Turing bifurcation 图灵分岔coexistence states 共存态multistability 多稳态/多稳定性homogeneous 同质equilibrium 平衡resilience 恢复力Turing-before-tipping 临界转变前的图灵斑图
参考文献
[1] M. Scheffer, S. Carpenter, J. A. Foley, C. Folke, B. Walker,Catastrophic shifts in ecosystems.Nature413, 591–596(2001). doi:10.1038/35098000; pmid:11595939[2] M. Schefferet al., Early-warning signals for critical transitions.Nature461, 5 3–59 (2009). doi:10.1038/nature08227; pmid:19727193[3] W. Steffenet al., Trajectories of the Earth System in the Anthropocene.Proc. Natl. Acad. Sci. U.S.A.115, 8252–8259 (2018). doi:10.1073/pnas.1810141115; pmid:30082409[4] J. van de Koppel, M. Rietkerk, F. J. Weissing, Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems.Trends Ecol. Evol.12, 352–356 (1997). doi: 10.1016/S0169-5347(97)01133-6; pmid:21238102[5] M. Rietkerk, F. van den Bosch, J. van de Koppel, Site-specific properties and irreversible vegetation changes in semi-arid ecosystems.Oikos80, 241–252 (1997). doi:10.2307/ 3546592[6] M. Scheffer, S. H. Hosper, M.-L. Meijer, B. Moss, E. Jeppesen,Alternative equilibria in shallow lakes.Trends Ecol. Evol.8,275–279 (1993). doi:10.1016/0169-5347(93)90254-M; pmid:21236168[7] M. Rietkerk, J. van de Koppel, Alternate stable states and threshold effects in semi-arid grazing systems.Oikos79, 69–76 (1997). doi:10.2307/3546091[8] M. Hirota, M. Holmgren, E. H. Van Nes, M. Scheffer, Global resilience of tropical forest and savanna to critical transitions.Science334, 232–235 (2011). doi:10.1126/ science.1210657; pmid:21998390[9] A. C. Staver, S. Archibald, S. A. Levin, The global extent and determinants of savanna and forest as alternative biome states.Science334, 230–232 (2011). doi:10.1126/science.1210465; pmid:21998389[10] A. C. Staver, S. A. Levin, Integrating theoretical climate and fire effects on savanna and forest systems.Am. Nat.180, 211–224 (2012). doi:10.1086/666648; pmid:22766932[11] F. Van Langeveldeet al., Effects of fire and herbivory on the stability of savanna ecosystems.Ecology84, 3 3 7–350 (2003). doi:10.1890/0012-9658(2003)084[0337:EOFAHO]2.0.CO;2[12] J. C. Alemanet al., Floristic evidence for alternative biome states in tropical Africa.Proc. Natl. Acad. Sci. U.S.A.117, 28183–28190 (2020). doi:10.1073/pnas.2011515117;pmid:33109722[13] C. S. Holling, inEngineering Within Ecological Constraints, P. E. Schulze, Ed. (National Academy Press, 1996), pp. 31–43.[14] P. Ashwin, S. Wieczorek, R. Vitolo, P. Cox, Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system.P h i l . T r a n s . R . S o c . A370, 1166–1184 (2012). doi:10.1098/rsta.2011.0306; p m i d :22291228[15] T. M. Lentonet al., Tipping elements in the Earth’s climate system.Proc. Natl. Acad. Sci. U.S.A.105, 1786–1793 (2008). doi:10.1073/pnas.0705414105; pmid:18258748[16] S. Drijfhoutet al., Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl. Acad. Sci. U.S.A.112, E5777–E5786 (2015). doi:10.1073/pnas.1511451112; pmid:26460042[17] P. Huybrechts, J. de Wolde, The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming.J. Clim.12, 2169–2188 (1999). doi:10.1175/1520-0442(1999)012<2169:TDROTG>2.0.CO;2[18] F. Pattyn, M. Morlighem, The uncertain future of the Antarctic ice sheet.Science367, 1331–1335 (2020). doi:10.1126/ science.aaz5487; pmid:32193321[19] J. Garbe, T. Albrecht, A. Levermann, J. F. Donges, R. Winkelmann, The hysteresis of the Antarctic ice sheet. Nature585, 538–544 (2020). doi:10.1038/s41586-020- 2727-5; pmid:32968257[20] T. F. Stocker, D. G. Wright, Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature351, 729–732 (1991). doi:10.1038/351729a0[21] S. Rahmstorf, A. Ganopolsky, Long-term global warning scenario’s computed with an efficient coupled climate model. Clim. Change43, 353–367 (1999). doi:10.1023/A:1005474526406[22] J. Lohmann, P. D. Ditlevsen, Risk of tipping the overturning circulation due to increasing rates of ice melt.Proc. Natl. Acad. Sci. U.S.A.118, e20179891 (2021). doi:10.1073/pnas.2017989118; pmid:33619095[23] J. Rockströmet al., A safe operating space for humanity. Nature461, 472–475 (2009). doi:10.1038/461472a; pmid:19779433[24] A. D. Barnoskyet al., Approaching a state shift in Earth’s biosphere.Nature486, 5 2–58 (2012). doi:10.1038/ nature11018; pmid:22678279[25] M. Rietkerk, S. C. Dekker, P. C. de Ruiter, J. van de Koppel, Self-organized patchiness and catastrophic shifts in ecosystems.Science305, 1926–1929 (2004). doi:10.1126/ science.1101867; pmid:15448261[26] A. M. Turing, The chemical basis of morphogenesis. Bull. Math. Biol.52, 153–197 (1990). doi:10.1007/ BF02459572; pmid:2185858[27] C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation.Science284, 1826–1828 (1999). doi:10.1126/ science.284.5421.1826; pmid:10364553[28] J. von Hardenberg, E. Meron, M. Shachak, Y. Zarmi, Diversity of vegetation patterns and desertification.Phys. Rev. Lett.87, 198101 (2001). doi:10.1103/PhysRevLett.87.198101[29] M. Rietkerket al., Self-organization of vegetation in arid ecosystems.Am. Nat.160, 524–530 (2002). doi:10.1086/ 342078; pmid:18707527[30] K. Gowda, H. Riecke, M. Silber, Transitions between patterned states in vegetation models for semiarid ecosystems. Phys. Rev. E89, 022701 (2014). doi:10.1103/ PhysRevE.89.022701; pmid:25353503[31] M. Rietkerk, J. van de Koppel, Regular pattern formation in real ecosystems.Trends Ecol. Evol.23, 169–175 (2008). doi:10.1016/j.tree.2007.10.013; pmid:18255188[32] K. Siteuret al., Beyond Turing: The response of patterned ecosystems to environmental change.Ecol. Complex.20, 81–96 (2014). doi:10.1016/j.ecocom.2014.09.002[33] R. Bastiaansenet al., Multistability of model and real dryland ecosystems through spatial self-organization.Proc. Natl. Acad. Sci. U.S.A.115, 11256–11261 (2018). doi:10.1073/ pnas.1804771115; pmid:30322906[34] R. Bastiaansen, A. Doelman, M. B. Eppinga, M. Rietkerk, The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation.Ecol. Lett.23, 4 1 4–429 (2020). doi:10.1111/ele.13449; pmid:31912954[35] F. H. Busse, Non-linear properties of thermal convection. Rep. Prog. Phys.41, 1929–1967 (1978). doi:10.1088/ 0034-4885/41/12/003[36] R. H. Wang, Q. X. Liu, G. Q. Sun, Z. Jin, J. van de Koppel, Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds.J. R. Soc. Interface6, 705–718 (2009). doi:10.1098/rsif.2008.0439; pmid:18986965[37] Q. X. Liuet al., Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems.Nat. Commun. 5, 5234 (2014). doi:10.1038/ncomms6234; pmid:25335554[38] E. H. van Nes, M. Hirota, M. Holmgren, M. Scheffer, Tipping points in tropical tree cover: Linking theory to data. Glob. Change Biol.20, 1016–1021 (2014). doi:10.1111/ gcb.12398; pmid:24106057[39] J. Pastor, B. Peckham, S. Bridgham, J. Weltzin, J. Chen, Plant community dynamics, nutrient cycling, and alternative stable equilibria in peatlands.Am. Nat.160, 553–568 (2002). doi:10.1086/342814; pmid:18707507[40] M. J. Donahue, R. A. Desharnais, C. D. Robles, P. Arriola, Mussel bed boundaries as dynamic equilibria: Thresholds, phase shifts, and alternative states.Am. Nat.178, 612–625 (2011). doi:10.1086/662177; pmid:22030731[41] J. Van de Koppel, P. M. J. Herman, P. Thoolen, C. H. R. Heip, Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat.Ecology82, 3449–3461 (2001). doi:10.1890/0012-9658(2001)082[3449:DASSOI]2.0.CO;2[42] O. D. Vinent, L. J. Moore, Barrier island bistability induced by biophysical interactions.Nat. Clim. Chang.5, 158–162 (2015). doi:10.1038/NCLIMATE2474[43]T. Van der Heide et al., Positive feedbacks in seagrass ecosystems: Implications for success in conservation and restoration. Ecosystems 10, 1311–1322 (2007). doi: 10.1007/ s10021-007-9099-7[44] T. van der Heide et al., Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. Ecology 91, 362–369 (2010) doi: 10.1890/08-1567.1; pmid: 20392001[45] E. D. Lazarus, S. Armstrong, Self-organized pattern formation in coastal barrier washover deposits. Geology 43, 363–366 (2015). doi: 10.1130/G36329.1[46] D. Ruiz-Reynés et al., Fairy circle landscapes under the sea.Sci. Adv. 3, e1603262 (2017). doi: 10.1126/sciadv.1603262;pmid: 28782035[47] V. Reijers, “A song of sand and mud: How plant-mediated feedbacks dictate landscape formation and dynamics of barrier islands,”thesis, Radboud University, Nijmegen (2019).[48] P. D. L. Ritchie, J. J. Clarke, P. M. Cox, C. Huntingford, Overshooting tipping point thresholds in a changing climate.Nature 592, 517–523 (2021). doi: 10.1038/s41586-021-03263-2; pmid: 33883733[49] H. Hillebrand et al., Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020). doi: 10.1038/s41559-020-1256-9;pmid: 32807945[50] G. Bel, A. Hagberg, E. Meron, Gradual regime shifts in spatially extended ecosystem. Theor. Ecol. 5, 591–604 (2012). doi: 10.1007/s12080-011-0149-6[51] Y. R. Zelnik, E. Meron, Regime shifts by front dynamics.Ecol. Indic. 94, 544 –552 (2018). doi: 10.1016/j.ecolind.2017.10.068[52] M. Ghil, Climate stability for a Sellers-type model. J. Atmos. Sci. 33, 3 –20 (1976). doi: 10.1175/1520-0469(1976)033<0003:CSFAST>2.0.CO;2[53] T. Bódai, V. Lucarini, F. Lunkeit, R. Boschi, Global instability in the Ghil–Sellers model. Clim. Dyn. 44, 3361–3381 (2015).doi: 10.1007/s00382-014-2206-5[54] S. H. R. Rosier et al., The tipping points and early-warning indicators for Pine Island Glacier, West Antarctica. Cryosphere 15, 1501–1516 (2021). doi: 10.5194/tc-15-1501-2021[55] C. Fernandez-Oto, O. Tzuk, E. Meron, Front instabilities can reverse desertification. Phys. Rev. Lett. 122, 048101 (2019).doi: 10.1103/PhysRevLett.122.048101; pmid: 30768298[56] M. E. Cates, J. Tailleur, Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).doi: 10.1146/annurev-conmatphys-031214-014710[57] Q.-X. Liu et al., Phase separation explains a new class of self-organized spatial patterns in ecological systems. Proc. Natl. Acad. Sci. U.S.A. 110, 11905–11910 (2013). doi: 10.1073/pnas.1222339110; pmid: 23818579[58] Q.-X. Liu et al., Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns. Phys. Life Rev. 19, 107–121 (2016). doi: 10.1016/j.plrev.2016.07.009; pmid: 27478087[59] E. Sheffer, J. von Hardenberg, H. Yizhaq, M. Shachak, E. Meron, Emerged or imposed: A theory on the role of physical templates and self-organisation for vegetation patchiness. Ecol. Lett. 16, 127–139 (2013). doi: 10.1111/ele.12027; pmid: 23157578[60] R. J. Scholes, S. R. Archer, Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).doi: 10.1146/annurev.ecolsys.28.1.517[61] J. D. Anadon, O. E. Sala, F. T. Maestre, Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical Americas. J. Ecol. 102, 1363–1373 (2014). doi: 10.1111/1365-2745.12325[62] M. Garcia Criado, I. H. Meyers-Smith, A. D. Bjorkman, C. E. R. Lehman, N. Stevens, Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 29, 925–943 (2020). doi: 10.1111/geb.13072[63] A. C. Staver, Prediction and scale in savanna ecosystems. New Phytol. 219, 52 –57 (2018). doi: 10.1111/nph.14829;pmid: 29027662[64] F. Accatino, C. De Michele, R. Vezzoli, D. Donzelli, R. J. Scholes, Tree–grass co-existence in savanna: Interactions of rain and fire. J. Theor. Biol. 267, 235 –242 (2010). doi: 10.1016/ j.jtbi.2010.08.012; pmid: 20708629[65] M. Baudena, F. D’Andrea, A. Provenzale, An idealized model for tree-grass coexistence in savannas: The role of life stage structure and fire disturbances. J. Ecol. 98, 74 –80 (2010). doi: 10.1111/j.1365-2745.2009.01588.x[66] V. de L. Dantas, M. Hirota, R. S. Oliveira, J. G. Pausas, Disturbance maintains alternative biome states. Ecol. Lett. 19, 12–19 (2016). doi: 10.1111/ele.12537; pmid: 26493189[67] D. D’Onofrio, J. von Hardenberg, M. Baudena, Not only trees: Grasses determine African tropical biome distributions via water limitation and fire. Glob. Ecol. Biogeogr. 27, 714 –725 (2018). doi: 10.1111/geb.12735[68] A. W. Cardoso et al., A distinct ecotonal tree community exists at central African forest-savanna transitions. J. Ecol.109, 1170–1183 (2021). doi: 10.1111/1365-2745.13549[69] T. Charles-Dominique, G. F. Midgley, K. W. Tomlinson, W. J. Bond, Steal the light: Shade vs fire adapted vegetation in forest-savanna mosaics. New Phytol. 218, 1419–1429 (2018). doi: 10.1111/nph.15117; pmid: 29604213[70] T. A. Groen,“Spatial matters: How spatial patterns and processes affect savanna dynamics,”thesis, Wageningen University (2007).[71] M. Baudena, M. Rietkerk, Complexity and coexistence in a simple spatial model for arid savanna ecosystems. Theor. Ecol.6, 131 –141(2013).doi:10.1007/s12080-012-0165-1[72] R. Martínez-García, J. M. Calabrese, C. López, Spatial patterns in mesic savannas: The local facilitation limit and the role of demographic stochasticity. J. Theor. Biol. 333,156–165 (2013). doi: 10.1016/j.jtbi.2013.05.024; pmid: 23747988[73] T. A. Groen, C. A. D. M. van de Vijver, F. van Langevelde, Do spatially homogenizing and heterogenizing processes affect transitions between alternative stable states? Ecol. Modell. 65, 119 –128 (2017). doi: 10.1016/j.ecolmodel.2017.10.002[74] S. Eby, A. Agrawal, S. Majumder, A. P. Dobson, V. Guttal, Alternative stable states and spatial indicators of critical slowing down along a spatial gradient in a savannaecosystem. Glob. Ecol. Biogeogr. 26, 638–649 (2017).doi: 10.1111/geb.12570[75] L. Eigentler, J. A. Sherratt, Metastability as a coexistence mechanism in a model for dryland vegetation patterns. Bull. Math. Biol. 81, 2290–2322 (2019). doi: 10.1007/ s11538-019-00606-z; pmid: 31012031[76] O. Tzuk, H. Uecker, E. Meron, The role of spatial self-organization in the design of agroforestry systems.PLOS ONE 15, e0236325 (2020). doi: 10.1371/ journal.pone.0236325; pmid: 32692773[77] B. Wuyts, A. R. Champneys, N. Verschueren, J. I. House, Tropical tree cover in a heterogeneous environment:A reaction-diffusion model. PLOS ONE 14, e0218151 (2019).doi: 10.1371/journal.pone.0218151; pmid: 31246968[78] V. Yatat, P. Couteron, J. J. Tewa, S. Bowong, Y. Dumont, An impulsive modelling framework of fire occurrence in a size-structured model of tree-grass interactions for savanna ecosystems. J. Math. Biol. 74, 1425–1482 (2017). doi: 10.1007/s00285-016-1060-y; pmid: 27659304[79] V. Yatat, P. Couteron, Y. Dumont, Spatially explicit modelling of tree–grass interactions in fire-prone savannas: A partial differential equations framework. Ecol. Complex. 36, 290–313(2018). doi: 10.1016/j.ecocom.2017.06.004[80] C. De Michele, F. Accatino, R. Vezzoli, R. J. Scholes, Savanna domain in the herbivores-fire parameter space exploiting a tree–grass–soil water dynamic model. J. Theor. Biol. 289, 74 –82 (2011). doi: 10.1016/j.jtbi.2011.08.014;pmid: 21875600[81] Q. Li, A. C. Staver, E. Weinan, S. A. Levin, Spatial feedbacks and the dynamics of savanna and forest. Theor. Ecol. 12, 237–262 (2019). doi: 10.1007/s12080-019-0428-1[82] E. Siero et al., Grazing away the resilience of patterned ecosystems. Am. Nat. 193, 472–480 (2019). doi: 10.1086/701669; pmid: 30794443[83] R. M. Holdo, R. D. Holt, J. M. Fryxell, Herbivore-vegetation feedbacks can expand the range of savanna persistence:Insights from a simple theoretical model. Oikos 122, 441–453(2013). doi: 10.1111/j.1600-0706.2012.20735.x[84] J. Sherratt, Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations. Appl. Math. Comput. 218, 4684–4694(2012). doi: 10.1016/j.amc.2011.11.005[85] S. Van der Stelt, A. Doelman, G. M. Hek, J. Rademacher, Rise and fall of periodic patterns for a generalized Klausmeier–Gray–Scott model. J. Nonlinear Sci. 23, 39 –95 (2013).doi: 10.1007/s00332-012-9139-0[86] A. Staal, S. C. Dekker, C. Xu, E. Van Nes, Bistability, spatial interactions and the distribution of tropical forests and savannas. Ecosystems 19, 1080–1091 (2016). doi: 10.1007/s10021-016-0011-1[87] J. C. Aleman, A. C. Staver, Spatial patterns in the global distributions of savanna and forest. Glob. Ecol. Biogeogr. 27, 792–803 (2018). doi: 10.1111/geb.12739[88] D. R. Uden et al., Spatial imaging and screening for regime shifts. Front. Ecol. Evol. 7, 407 (2019). doi: 10.3389/fevo.2019.00407[89] A. C. Staver, G. P. Asner, I. Rodriguez-Iturbe, S. A. Levin, I. P. J. Smit, Spatial patterning among savanna trees in high-resolution, spatially extensive data. Proc. Natl. Acad. Sci. U.S.A. 116, 10681–10685 (2019). doi: 10.1073/ pnas.1819391116; pmid: 31085650[90] W. Zhang et al., From woody cover to woody canopies: How Sentinel-1 and Sentinel-2 data advance the mapping of woody plants in savannas. Remote Sens. Environ. 234, 111465(2019). doi: 10.1016/j.rse.2019.111465[91] G. Xanthopoulos, G. Maheras, V. Gouma, M. Gouvas, Is the Keetch–Byram drought index (KBDI) directly related to plant water stress? For. Ecol. Manage. 234, S27 (2006).doi: 10.1016/j.foreco.2006.08.043[92] L. Wang, J. J. Qu, Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 3, 237 –247 (2009). doi: 10.1007/s11707-009-0023-7[93] T. Long et al., 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sens. 11, 489 (2019). doi: 10.3390/rs11050489[94] R. B. Hoyle, Pattern Formation: An Introduction to Methods (Cambridge Univ. Press, 2006).[95] A. Doelman, in Complexity Science, M. Peletier, R. van Santen, E. Steur, Eds. (World Scientific, 2019), pp. 129–192.[96] R. Bastiaansen, A. Doelman, The dynamics of disappearing pulses in a singularly perturbed reaction-diffusion systems with parameters that vary in time and space. Physica D 388, 45–72 (2019). doi: 10.1016/j.physd.2018.09.003[97] R. Bastiaansen, P. Carter, A. Doelman, Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems. Nonlinearity 32, 2759–2814 (2019).doi: 10.1088/1361-6544/ab1767[98] O. Jaïbi, A. Doelman, M. Chirilus-Bruckner, E. Meron, The existence of localized vegetation patterns in a systematically reduced model for dryland vegetation. Physica D 412, 132637 (2020). doi: 10.1016/j.physd.2020.132637[99] M. Scheffer et al., Anticipating critical transitions. Science 338, 344–348 (2012). doi: 10.1126/science.1225244; pmid: 23087241[100] J. N. Kutz, S. L. Brunton, B. W. Brunton, J. L. Proctor,Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems (Society for Industrial and Applied Mathematics, 2016).[101] P. Van Heijster, B. Sandstede, Bifurcations to travelling planar spots in a three-component FitzHugh–Nagumo system. Physica D 275, 19 –34 (2014). doi: 10.1016/j.physd.2014.02.001[102] B. Wuyts, A. R. Champneys, J. I. House, Correction: Author Correction: Amazonian forest-savanna bistability and human impact. Nat. Commun. 9, 16179 (2018). doi: 10.1038/ncomms16179; pmid: 29465082[103] A. Doelman, P. van Heijster, J. Shen, Pulse dynamics in reaction–diffusion equations with strong spatially localizedimpurities. Phil. Trans. R. Soc. A 376, 20170183 (2018).doi: 10.1098/rsta.2017.0183; pmid: 29507168[104] L. Eigentler, J. A. Sherratt, Spatial self-organisation enables species coexistence in a model for savanna ecosystems.J. Theor. Biol. 487, 110122 (2020). doi: 10.1016/j.jtbi.2019.110122; pmid: 31862451[105] M. I. Budyko, The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969). doi: 10.3402/tellusa.v21i5.10109[106] W. D. Sellers, A global climatic model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol. 8,392–400 (1969). doi: 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2[107] H. Stommel, Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230 (1961). doi: 10.1111/j.2153-3490.1961.tb00079.x[108] H. Gildor, E. Tziperman, Physical mechanisms behind biogeochemical glacial-interglacial CO2 variations.Geophys. Res. Lett. 28, 2421 –2424 (2001). doi: 10.1029/2000GL012571[109] H. M. Alkhayoun, P. Ashwin, L. C. Jackson, C. Quinn, R. A. Wood, Basin bifurcation, oscillatory instability and scale-induced thresholds for Atlantic meridonal overturningcirculation in a global box model. Proc. R. Soc. A 475,20190051 (2019). doi: 10.1098/rspa.2019.0051[110]. P. Valdes, Built for stability. Nat. Geosci. 4, 414 –416 (2011).doi: 10.1038/ngeo1200