缩小的社会大脑?社会互动增强神经复杂性
摘要
我们通常以为,随着自然演化,人类的大脑体积不断增大。但研究显示,在新石器时代,随着社会组织变得更复杂,世界各地的人类大脑体积实际上都显著减少。大脑体积为什么会减小?更小的大脑必然更“愚蠢”吗?最近认知科学和系统科学专业的学者在 Frontiers in Neurorobotics 上发表研究,建立了一个最小化模型,用不同神经元数量的神经网络表示大脑体积,用神经熵和自由度两个指标量化表示神经活动的复杂性。研究发现,社会交互情境下具有较小体积大脑的智能体与独立情境下具有较大体积大脑的智能体的神经复杂性相当,表明体积较小的大脑能够通过社交互动来增强其神经复杂性,从而抵消大脑尺寸的缩小。
集智俱乐部联合天桥脑科学研究院等发起【神经动力学模型读书会】,将于3月19日开始,持续10-12周。期间将围绕神经网络多尺度建模及其在脑疾病、脑认知方面的应用进行研讨,读书会详情及参与方式见文末。
研究领域:神经复杂性,香农熵,互信息,非线性动力学,遗传算法
周莉 | 作者
刘刚强、梁金 | 审校
邓一雪 | 编辑
论文题目:Shrunken Social Brains? A Minimal Model of the Role of Social Interaction in Neural Complexity
论文地址:https://www.frontiersin.org/articles/10.3389/fnbot.2021.634085/full
人们普遍认为,旧石器时代之前的人类大脑体积不断增大,以此来应对社会环境由简单到复杂的过程中对人类认知要求的不断提高 [1-2]。然而,有研究显示,在新石器时代,世界各地的人类大脑体积经历了显著的减少,且超出了身体大小整体减小所预期的范围[3-9]。该如何解释人类大脑体积变小这一现象呢?
1. 缩小的人类大脑
1. 缩小的人类大脑
2. 量化神经复杂性,
比较大脑体积与社会互动的影响
2. 量化神经复杂性,
比较大脑体积与社会互动的影响
3. 社会互动越多,神经活动越复杂
3. 社会互动越多,神经活动越复杂
(1)神经熵的统计分析
图2. 10次仿真实验中2-神经元模型和3-神经元模型的智能体行为示意图
图3. 独立和交互环境下2-神经元模型和3-神经元模型的神经熵比较
(2)非线性时间序列的动力学分析
图4. 耦合和解耦情形下独立与交互2-神经元模型和3-神经元模型的神经熵
4. 更小的大脑,并不意味着更低的智能
4. 更小的大脑,并不意味着更低的智能
参考文献
1.Byrne, R.W. (1996). Machiavellian intelligence. Evol. Anthropol. 5, 172–180.2.Dunbar, R. I. M., and Shultz, S. (2007). Evolution in the social brain. Science 317,1344–1347. doi: 10.1126/science.11454633.DeCasien, A. R., Williams, S. A., and Higham, J. P. (2017). Primate brainsize is predicted by diet but not sociality. Nat. Ecol. Evol. 1:0112.doi: 10.1038/s41559-017-01124.Wrangham, R. (2009). Catching Fire: How Cooking Made Us Human. New York. NY: Basic Books.5.Herculano-Houzel, S. (2016). The Human Advantage: How Our Brains BecameRemarkable. Cambridge, MA: MIT Press.6.Brown, P. (1987). Pleistocene homogeneity and Holocene size reduction:the Australian human skeletal evidence. Arch. Oceania 22, 41–67.doi: 10.1002/j.1834-4453.1987.tb00166.x7.Henneberg, M. (1988). Decrease of human skull size in the Holocene. Hum. Biol.60, 395–405.8.Henneberg, M., and Steyn, M. (1993). Trends in cranial capacity and cranial index in Subsaharan Africa during the Holocene. Am. J. Hum. Biol. 5, 473–479. doi: 10.1002/ajhb.1310050411.9.Brown, P., and Maeda, T. (2004). Post-Pleistocene diachronic change in East Asian facial skeletons: the size, shape and volume of the orbits. Anthropol. Sci. 112,29–40. doi: 10.1537/ase.0007210.Bailey, D. H., and Geary, D. C. (2009). Hominid brain evolution: testing climatic, ecological, and social competition models. Hum. Nat. 20, 67–79. doi: 10.1007/s12110-008-9054-0.11.Hare, B., Wobber, V., and Wrangham, R. (2012). The self-domestication hypothesis: evolution of bonobo psychology is due to selection against aggression. Anim. Behav. 83, 573–585. doi: 10.1016/j.anbehav.2011.12.00712.Hare, B. (2017). Survival of the friendliest: Homo sapiens evolved via selection for prosociality. Ann. Rev. Psychol. 68, 155–186. doi: 10.1146/annurev-psych-010416-04420113.Cieri, R. L., Churchill, S. E., Franciscus, R. G., Tan, J., and Hare, B. (2014). Craniofacial feminization, social tolerance, and the origins of behavioral modernity. Curr. Anthropol. 55, 419–443. doi: 10.1086/67720914.Leach, H. M. (2003). Human domestication reconsidered. Curr. Anthropol. 44, 349–368. doi: 10.1086/368119.15.Henneberg, M. (2006). The rate of human morphological microevolution and taxonomic diversity of hominids. Stud. Histor. Anthropol. 4, 49–59. Available online at: http://www.antropologia.uw.edu.pl/SHA/sha-04-03.pdf16.Clark, A. (2006). Language, embodiment, and the cognitive niche. Trends Cogn. Sci. 10, 370–374. doi: 10.1016/j.tics.2006.06.01217.Sterelny, K. (2017). Artifacts, symbols, thoughts. Biol. Theory 12, 236–247. doi: 10.1007/s13752-017-0277-318.Sterelny, K. (2012). The Evolved Apprentice: How EvolutionMade Humans Unique. Cambridge, MA: MIT Press.19.Bednarik, R. G. (2014). Doing with less: hominin brain atrophy. Homo 65, 433–449. doi: 10.1016/j.jchb.2014.06.00120.Newen, A., Gallagher, S., and De Bruin, L. (eds.). (2018). “4E cognition: Historical roots, key concepts, and central issues,” in The Oxford Handbook of 4E Cognition (Oxford: Oxford University Press), 3–15.21.O’Donnell, S., Bulova, S. J., DeLeon, S., Khodak, P., Miller, S., and Sulger, E. (2015). Distributed cognition and social brains: reductions in mushroom body investment accompanied the origins of sociality in wasps (Hymenoptera: Vespidae). Proc. R. Soc. B Biol. Sci. 282:20150791. doi: 10.1098/rspb.2015.079122.Farris, S. M. (2016). Insect societies and the social brain. Curr. Opin. Insect Sci. 15, 1–8. doi: 10.1016/j.cois.2016.01.01023.Feinerman, O., and Traniello, J. F. A. (2016). Social complexity, diet, and brain evolution: modeling the effects of colony size, worker size, brain size, and foraging behavior on colony fitness in ants. Behav. Ecol. Sociobiol. 70, 1063–1074. doi: 10.1007/s00265-015-2035-524.Jin, K.-s., and Baillargeon, R. (2017). Infants possess an abstract expectation of ingroup support. Proc. Natl. Acad. Sci. U.S.A. 114, 8199–8204. doi: 10.1073/pnas.170628611425.Seymour, R. S., Bosiocic, V., and Snelling, E. P. (2016). Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution. Ro. Soc. Open Sci. 3:160305. doi: 10.1098/rsos.16030526.Candadai, M., Setzler, M., Izquierdo, E. J., and Froese, T. (2019). Embodied dyadic interaction increases complexity of neural dynamics: A minimal agent-based simulation model. Front. Psychol. 10:540. doi: 10.3389/fpsyg.2019. 0054027.Di Paolo, E. A., Noble, J., and Bullock, S. (2000). “Simulation models as opaque thought experiments,” in Artificial Life VII: Proceedings of the Seventh International Conference on Artificial Life, eds M. A. Bedau, J. S. McCaskill, N. H. Packard, and S. Rasmussen (Cambridge, MA: MIT Press), 497–506.28.Cliff, D., Husbands, P., and Harvey, I. (1993). Explorations in evolutionary robotics. Adapt. Behav. 2, 73–110. doi: 10.1177/10597123930020010429.Beer, R. D. (1997). The dynamics of adaptive behavior: a research program. Rob. Auton. Syst. 20, 257–289. doi: 10.1016/S0921-8890(96)00063-230.Harvey, I., Di Paolo, E. A.,Wood, R., Quinn,M., and Tuci, E. (2005). Evolutionary robotics: a new scientific tool for studying cognition. Artif. Life 11, 79–98. doi: 10.1162/106454605327899131.Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev. 106, 620–630. doi: 10.1103/PhysRev.106.62032.Laughlin, S. (1981). A simple coding procedure enhances a neuron’s information capacity. Z. Naturforsch. C 36, 910–912. doi: 10.1515/znc-1981-9-104033.Carhart-Harris, R. L. (2018). The entropic brain - revisited. Neuropharmacology 142, 167–178. doi: 10.1016/j.neuropharm.2018.03.01034.Dotov, D., and Froese, T. (2018). Entraining chaotic dynamics: a novel movement sonification paradigmcould promote generalization. Hum.Mov. Sci. 61, 27–41.doi: 10.1016/j.humov.2018.06.01635.Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116, 2266–2301.doi: 10.1016/j.clinph.2005.06.01136.Kodba, S., Perc,M., andMarhl,M. (2005). Detecting chaos from a time series. Eur. J. Phys. 26, 205–215. doi: 10.1088/0143-0807/26/1/02137.Perc, M. (2006). Introducing nonlinear time series analysis in undergraduate courses. Fizika A 15, 91–112. Available online at: https://dk.um.si/IzpisGradiva. php?id=35975, http://fizika.hfd.hr/fizika_a/av06/a15p091.htm38.Froese, T., Gershenson, C., and Rosenblueth, D. A. (2013). “The dynamically extended mind: a minimal modeling case study,” in 2013 IEEE Congress on Evolutionary Computation, (Cancun, Mexico: IEEE Press), 1419–1426.39.Fraser, A. M., and Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140. doi: 10.1103/PhysRevA.33.113440.Kennel,M. B., Brown, R., and Abarbanel, H. D. I. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411. doi: 10.1103/PhysRevA.45.340341.Froese, T., and Di Paolo, E. A. (2010). Modelling social interaction as perceptual crossing: an investigation into the dynamics of the interaction process. Connect. Sci. 22, 43–68. doi: 10.1080/0954009090319792842.Campos, J. I., and Froese, T. (2017). “Referential communication as a collective property of a brain-body-environment-body-brain system: aminimal cognitive model,” in 2017 IEEE Symposium Series on Computational Intelligence (SSCI),(Honolulu, HI: IEEE Press), 863–870.43.Reséndiz-Benhumea, G. M., Sangati, E., and Froese, T. (2020). “Levels of coupling in dyadic interaction: An analysis of neural and behavioral complexity,” in 2020 IEEE Symposium Series on Computational Intelligence (SSCI), (Canberra, ACT:IEEE Press), 2250–2256.
(参考文献可上下滑动查看)
神经动力学模型读书会
随着电生理学、网络建模、机器学习、统计物理、类脑计算等多种技术方法的发展,我们对大脑神经元相互作用机理与连接机制,对意识、语言、情绪、记忆、社交等功能的认识逐渐深入,大脑复杂系统的谜底正在被揭开。为了促进神经科学、系统科学、计算机科学等领域研究者的交流合作,我们发起了【神经动力学模型读书会】。
集智俱乐部读书会是面向广大科研工作者的系列论文研读活动,其目的是共同深入学习探讨某个科学议题,激发科研灵感,促进科研合作。【神经动力学模型读书会】由集智俱乐部和天桥脑科学研究院联合发起,将于3月19日开始,每周六下午14:00-16:00(或每周五晚上19:00-21:00,根据实际情况调整)进行,预计持续10-12周。期间将围绕神经网络多尺度建模及其在脑疾病、脑认知方面的应用进行研讨。
详情请见:
推荐阅读
Science:大脑神经元复杂网络连接的新机制 PNAS速递:行为和神经证据表明,大脑自我表征随时间推移被压缩 Nature:从全脑体积重建获得的多尺度脑图 《张江·复杂科学前沿27讲》完整上线! 成为集智VIP,解锁全站课程/读书会 加入集智,一起复杂!
点击“阅读原文”,即可报名读书会