1. Hoel, E.P., L. Albantakis, and G. Tononi, Quantifying causal emergence shows that macro can beat micro. Proc Natl Acad Sci U S A, 2013. 110(49): p. 19790-5.2. Nunez, P.L. and R. Srinivasan, Electric fields of the brain: the neurophysics of EEG. 2006: Oxford University Press, USA.3. Haken, H., Synergetics. Physics Bulletin, 1977. 28(9): p. 412.4. Jirsa, V.K. and H. Haken, Field Theory of Electromagnetic Brain Activity. Phys Rev Lett, 1996. 77(5): p. 960-963.5. Freeman, W.J., Mass action in the nervous system. Vol. 2004. 1975: Citeseer.6. Valdes-Sosa, P.A., et al., Model driven EEG/fMRI fusion of brain oscillations. Hum Brain Mapp, 2009. 30(9): p. 2701-21.7. Daunizeau, J., K.E. Stephan, and K.J. Friston, Stochastic dynamic causal modelling of fMRI data: should we care about neural noise? Neuroimage, 2012. 62(1): p. 464-81.8. Anderson, P.W., More Is Different. Science, 1972. 177(4047): p. 393-396.9. Deco, G., et al., The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol, 2008. 4(8): p. e1000092.10. Friston, K., The free-energy principle: a unified brain theory? Nat Rev Neurosci, 2010. 11(2): p. 127-38.11. Huys, Q.J., T.V. Maia, and M.J. Frank, Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci, 2016. 19(3): p. 404-13.12. Jansen, B.H. and V.G. Rit, Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern, 1995. 73(4): p. 357-66.13. Marreiros, A.C., et al., Population dynamics: variance and the sigmoid activation function. Neuroimage, 2008. 42(1): p. 147-57.14. Freeman, W.J., Nonlinear gain mediating cortical stimulus-response relations. Biol Cybern, 1979. 33(4): p. 237-47.15. Wilson, H.R. and J.D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J, 1972. 12(1): p. 1-24.16. Miller, P., et al., A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. Cereb Cortex, 2003. 13(11): p. 1208-18.17. Wong, K.F. and X.J. Wang, A recurrent network mechanism of time integration in perceptual decisions. J Neurosci, 2006. 26(4): p. 1314-28.18. Horvat, S., et al., Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates. PLoS Biol, 2016. 14(7): p. e1002512.19. Woolrich, M.W. and K.E. Stephan, Biophysical network models and the human connectome. Neuroimage, 2013. 80: p. 330-8.20. Jirsa, V.K., et al., Towards the virtual brain: network modeling of the intact and the damaged brain. Arch Ital Biol, 2010. 148(3): p. 189-205.21. Coombes, S., et al., Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys Rev E Stat Nonlin Soft Matter Phys, 2007. 76(5 Pt 1): p. 051901.22. Muller, L., et al., The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat Commun, 2014. 5: p. 3675.23. Robinson, P.A., et al., Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment. Neuroimage, 2016. 142: p. 79-98.24. Byrne, A., D. Avitabile, and S. Coombes, Next-generation neural field model: The evolution of synchrony within patterns and waves. Phys Rev E, 2019. 99(1-1): p. 012313.25. Breakspear, M., et al., A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex, 2006. 16(9): p. 1296-313.26. Friston, K.J., L. Harrison, and W. Penny, Dynamic causal modelling. Neuroimage, 2003. 19(4): p. 1273-302.27. Stephan, K.E., et al., Nonlinear dynamic causal models for fMRI. Neuroimage, 2008. 42(2): p. 649-62.28. Aquino, K.M., et al., Hemodynamic traveling waves in human visual cortex. PLoS Comput Biol, 2012. 8(3): p. e1002435.29. Hansen, E.C., et al., Functional connectivity dynamics: modeling the switching behavior of the resting state. Neuroimage, 2015. 105: p. 525-35.30. Freyer, F., et al., Biophysical mechanisms of multistability in resting-state cortical rhythms. J Neurosci, 2011. 31(17): p. 6353-61.31. Zalesky, A., et al., Time-resolved resting-state brain networks. Proc Natl Acad Sci U S A, 2014. 111(28): p. 10341-6.32. Gollo, L.L. and M. Breakspear, The frustrated brain: from dynamics on motifs to communities and networks. Philos Trans R Soc Lond B Biol Sci, 2014. 369(1653).33. Deco, G. and V.K. Jirsa, Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J Neurosci, 2012. 32(10): p. 3366-75.34. Prichard, D. and J. Theiler, Generating surrogate data for time series with several simultaneously measured variables. Phys Rev Lett, 1994. 73(7): p. 951-954.35. Haimovici, A., et al., Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys Rev Lett, 2013. 110(17): p. 178101.36. Cabral, J., M.L. Kringelbach, and G. Deco, Exploring the network dynamics underlying brain activity during rest. Prog Neurobiol, 2014. 114: p. 102-31.37. Roberts, J.A., T.W. Boonstra, and M. Breakspear, The heavy tail of the human brain. Curr Opin Neurobiol, 2015. 31: p. 164-72.38. Jirsa, V.K., et al., The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread. Neuroimage, 2017. 145(Pt B): p. 377-388.39. Stephan, K.E., K.J. Friston, and C.D. Frith, Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull, 2009. 35(3): p. 509-27.40. Wagner, G., et al., Structural and functional dysconnectivity of the fronto-thalamic system in schizophrenia: a DCM-DTI study. Cortex, 2015. 66: p. 35-45.41. Hyett, M.P., et al., Disrupted effective connectivity of cortical systems supporting attention and interoception in melancholia. JAMA Psychiatry, 2015. 72(4): p. 350-8.42. Stephan, K.E., et al., Translational Perspectives for Computational Neuroimaging. Neuron, 2015. 87(4): p. 716-32.43. Stephan, K.E., et al., Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry, 2016. 3(1): p. 84-90.44. Murray, J.D., et al., Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. Cereb Cortex, 2014. 24(4): p. 859-72.45. Eguiluz, V.M., et al., Scale-free brain functional networks. Phys Rev Lett, 2005. 94(1): p. 018102.46. Levina, A., J.M. Herrmann, and T. Geisel, Dynamical synapses causing self-organized criticality in neural networks. Nature Physics, 2007. 3(12): p. 857-860.