神经元的分类无唯一标准,例如可分为兴奋性、抑制性,静息态和自发激发态等。根据神经元发放脉冲后,脉冲频率和电流曲线是否连续可将神经元分为Type I和Type II。如果曲线连续则为Type I,不连续则为Type II。对于Type II, 当电压低于脉冲阈值时,会呈现出共振/振荡效果,由于Type I的连续特性,这类神经元可以有效地编码输入信号的强度[6]。[相位反应曲线](http://www.scholarpedia.org/article/Phase_response_curve)的定义:在能够产生规则脉冲的神经元中,于两个相邻脉冲间不同时间点施加微弱的刺激,下一个脉冲的时间会被如何改变,提前还是延后,总是提前则为Type I。如果刺激位于相位晚期脉冲被提前,于早期脉冲被延迟,这类神经元则为Type II神经元。
4. 神经元相关研究进展
与适时状态相关误差学习
小脑中的浦肯野细胞是小脑皮质的唯一输出,运动感官信息经过苔藓纤维传入,再经过平行纤维传递给浦肯野细胞的树突,小脑输出的运动状态信息与大脑预期不一致时,通过爬行纤维传入误差学习信号,进而改变平行纤维与浦肯野细胞的突触连接强度来实现小脑学习。过去大家认为爬行纤维给浦肯野细胞提供二进制的误差学习信号,这种假设似乎表明小脑学习效率的低下[7-8]。由于实验技术的限制,通过实验手段很难系统研究这个问题。为了解决这一问题,需要能整合大量实验数据的新模型。计算生物学领域常见的方法是在大量细胞中收集不同离子电流特性的数据,进行平均处理,然后再用这些拥有均值特性的离子电流构建模型,去模拟平均化之后的模型输出信号。但是这种平均处理的方法从原理上是错误的,并不能总是获得满意的模型,以浦肯野细胞为例,之前十余年Erik De Schutter小组一直无法得到满意的模型。臧老师自己的模型放松了每个参数的约束,虽然采用了平均处理的理念,但只要参数值在测量的范围之内就可以,这样就得到了基于Compartment的新浦肯野细胞模型[9]。爬行纤维在浦肯野细胞中的树突响应与浦肯野细胞的兴奋状态相关。以浦肯野细胞的树突响应为例,在电势水平较低的时候,这个兴奋仅仅局限在树突主干以及离胞体比较近的区域。随着兴奋状态的提高,树突响应逐渐扩散到整个树突,这个过程的机制解释如下:在树突的远端分布着大量的KV4离子通道,电势水平比较低的时候钾电流的availability比较大,这个电流相当于一个刹车片,阻止电信号向树突末梢进行传递。随着电势水平逐渐升高,钾电流逐渐失活,从而允许爬行纤维在树突近端激发的电活动传递到树突远端。除了树突响应,胞体输出(黑色曲线)与浦肯野细胞的实时兴奋状态也是动态相关的。浦肯野细胞的不同树突分支也有着不同的兴奋特性。浦肯野细胞树突分支上脉冲数量有另外一层意义,代表着该位置输入的钙离子信号的浓度变化幅度。如果有两个树突脉冲,就意味着有更大的钙离子浓度信号。钙离子信号是平行纤维与浦肯野细胞间突触可塑性的引发因素,钙离子信号浓度较高,则平行纤维与浦肯野细胞之间的树突突触会实现长效抑制LTD;反之若浓度较低,则实现长效增强LTP。简单总结:爬行纤维在浦肯野细胞中的响应能够根据该细胞的实时兴奋状态产生一个模拟信号而不是二进制的有或无信号。
[1]Yazan N. Billeh. Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex. neuron, 2020, 106(3): 388-403.e18[2]A. L. Hodgkin, A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerves. J. Physiol., 1952, 117(4): 500-544[3]JR Clay. Determining K+ channel activation curves from K+ channel currents often requires the Goldman–Hodgkin–Katz equation. Front. Cell. Neurosci, 2009[4]W Mel B.. Information processing in dendritic trees, 1994, 6(6): 1031–1085[5]Laurent Badel, Sandrine Lefort, Romain Brette, et al. Dynamic I-V Curves Are Reliable Predictors of Naturalistic Pyramidal-Neuron Voltage Traces. Journals, 2008[6]Guillaume Drion, Timothy O’Leary, Eve Marder. Ion channel degeneracy enables robust and tunable neuronal firing rates. proceedings of the national academy of sciences, 2015, 112(38): E5361-E5370[7]J. C. Eccles, R. Llinás, K. Sasaki. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. The Physiological Society, 1966[8]Jorge Golowasch, Mark S. Goldman, L. F. Abbott, et al. Failure of Averaging in the Construction of a Conductance-Based Neuron Model. JOURNALS, 2002[9]Zang Y., Dieudonné S., De Schutter E.. Voltage-and branch-specific climbing fiber responses in Purkinje cells[J]. Cell reports, 2018, 24(6): 1536–1549[10]Michael Häusser. Dendrites: bug or feature?. current opinion in neurobiology, 2003, 13(3): 372-383[11]Zang Y., De Schutter E.. The cellular electrophysiological properties underlying multiplexed coding in Purkinje cells[J]. Journal of Neuroscience, 2021, 41(9): 1850–1863[12]Zang Y., De Schutter E.. The cellular electrophysiological properties underlying multiplexed coding in Purkinje cells[J]. Journal of Neuroscience, 2021, 41(9): 1850–1863[13]Yunliang Zang, Sungho Hong, Erik De Schutter. Firing rate-dependent phase responses of Purkinje cells support transient oscillations. Research Article, 2020[14]de la Rocha, Jaime, Doiron, et al. Correlation between neural spike trains increases with firing rate. nature, 2007, 448(7155): 802-806[15]Kuramoto Yoshiki. Cooperative Dynamics of Oscillator CommunityA Study Based on Lattice of Rings. progress of theoretical physics supplement, 1984[16]Schulz, David J, Goaillard, et al. Variable channel expression in identified single and electrically coupled neurons in different animals. nature neuroscience, 2006, 9(3): 356-362[17]David J. Schulz, Jean-Marc Goaillard, Eve E. Marder. Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. PNAS, 2007[18]Gwendal LeMasson, Eve Marder, L. F. Abbott. Activity-Dependent Regulation of Conductances in Model Neurons. science, 1993, 259(5103)[19]Zheng Liu, Jorge Golowasch, Eve Marder and L. F. Abbott. A Model Neuron with Activity-Dependent Conductances Regulated by Multiple Calcium Sensors. Journal of Neuroscience, 1998[20]Gina Turrigiano, L. F. Abbott, Eve Marder. Activity-Dependent Changes in the Intrinsic Properties of Cultured Neurons. science, 1994, 264(5161)[21]Timothy O’Leary. Cell Types, Network Homeostasis, and Pathological Compensation from a Biologically Plausible Ion Channel Expression Model. neuron, 2014, 82(4): 809-821[22]Mark S. Goldman, Jorge Golowasch, Eve Marder , et al. Global Structure, Robustness, and Modulation of Neuronal Models. Journal of Neuroscience, 2001[23]Grubb, Matthew S., Burrone, et al. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. nature, 2010, 465(7301): 1070-1074[24]Amsalem, Oren, Eyal, et al. An efficient analytical reduction of detailed nonlinear neuron models. nature communications, 2020, 11(1): 1-13[25]Daniel Maxim Iascone. Whole-Neuron Synaptic Mapping Reveals Spatially Precise Excitatory/Inhibitory Balance Limiting Dendritic and Somatic Spiking. neuron, 2020, 106(4): 566-578.e8[26]Beaulieu-Laroche, Lou, Brown, et al. Allometric rules for mammalian cortical layer 5 neuron biophysics. nature, 2021, 600(7888): 274-278[27]Albert Gidon, Timothy Adam Zolnik, Pawel Fidzinski, et al. Dendritic action potentials and computation in human layer 2/3 cortical neurons. science, 2020, 367(6473)[28]David Beniaguev. Single cortical neurons as deep artificial neural networks. neuron, 2021, 109(17): 2727-2739.e3