八上尖子生培优系列(46) ——乘法公式(3)
(点击“初中数学延伸课堂”关注)
数学科是“练”的科目,如果在学习中缺少练习或者练习量不够,达不到熟练程度,即便课堂上听得再清楚明白,也未必能在实际应用中运用自如,临场发挥也就不会正常、顺利,尤其是遇到带有“一定思维含量”的试题就不能随机应变。况且课堂上受教学时间和全班同学的能力差异影响,老师们无法对每一位学生“细致入微”地照顾,于是造成了众多的优秀生“吃不饱”的现象。
为此,本公众号近期陆续推出相应章节知识的精选试题解析与同步对应练习解析(含详细解答过程),以弥补课堂教学时间和教学容量的限制,为优秀生提供更优质的阅读和训练机会,便于家长检测孩子掌握知识的情况,同时也为教师查阅相关知识的拓展和延伸资料提供方便。力求做到:所选的试题尽量与课时同步,又有适当的提升,当然更重视知识内容的实际演练。为了不花费孩子们更多的时间,每日只发布“一例一练”(个别小知识点除外),精析每一道题,为孩子、家长和老师提供方便。
【例题】计算
①(2x﹣3y)2﹣(y﹣3x)(3x﹣y)
②(3﹣2x+y)(3+2x﹣y)
【分析】
①(2x﹣3y)2可以直接利用完全平方公式进行计算,(y﹣3x)(3x﹣y)中的两项刚好均相反,可提出一个负号,变成-(y﹣3x)2,转化为完全平方公式进行计算,最后去括号后,再合并;
②观察公式的结构特征,可通过添加括号转化为[3﹣(2x﹣y)][3+(2x﹣y)](因含2x和y的项均相反),再利用平方差公式进行计算,最后再利用完全平方公式进行计算,并化简.
【解】①原式=(2x﹣3y)2+(y﹣3x)2
=4x2﹣12xy+9y2+y2﹣6xy+9x2
=13x2﹣18xy+10y2
②原式=[3﹣(2x﹣y)][3+(2x﹣y)]
=9﹣(2x﹣y)2=9﹣(4x2+4xy﹣y2)
=9﹣4x2+4xy﹣y2.
【反思】完全平方公式和平方差公式的应用,理解公式的结构特征,并能进行转化是解题的关键.
【练习】计算
①(2x﹣3y)(-2x﹣3y)﹣(3x﹣y)2
②(2x+y﹣3)(3+2x﹣y)
(答案下期找)
特别推荐:
识图、读图、画图、作图——几何入门教学建议(福州市初一岗培)
坚持下来,不容易哦!记得:给点动力哦。谢谢!
培优系列(45)练习答案
【原题呈现】计算:(3+1)(32+1)(34+1)(38+1)-0.5×316=___.
【分析】由于1=12=14=……=12n,再根据所求的式子的特征,因此若在原式的前面添加因式(3﹣1)(此时与原式不相等,因此也须再除以2),就可连续利用平方差公式计算求出x(化简原式),进一步可求出n值.
【解答】原式=0.5(3﹣1)(1+3)(1+32) (1+34) (1+38)-0.5×316=0.5(32﹣1) (1+32) (1+34) (1+38)-0.5×316=…=0.5×(316﹣1)-0.5×316=-0.5.
∴x+1=22n﹣1+1=22n,2n=128,解得:n=64.
【反思】巧妙利用乘上一个因式0.5(3-1)就可连接运用平方差公式进行巧算.
扫描二维码,添加关注后,进入公众号,输入数字“1”可获得免费的《几何画板》使用实例视频教程(622分钟)的学习地址.
强调:本公众号对应的QQ群:178733124(课件制作学习交流群),正在火热进行中,每周两场现场直播!就算是“0”基础,也能把它学好,赶紧加入哦!