其他
2017年浙江湖州中考填空压轴(双曲线与等腰三角形)
(点击“初中数学延伸课堂”关注)
(2017·湖州)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1/x和y=9/x在第一象限的图象于点A,B,过点B作 BD⊥x轴于点D,交y=1/x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是 .
【分析】对于等腰三角形问题,我们首先想到的是由谁为顶角顶点为依据,可分成三类:AB=AC,BA=BC,CA=CB.
①AB=AC,根据等腰三角形三线合一的性质,若AB=AC,则过点A作BC的垂线AE,那么BE=CE ,而由点坐标,可分析出,BE≠CE,因此,这种情况不存在。如下图示:
【反思】:对于等腰三角形问题,除了利用勾股定理求线段长度外,我们在题目背景中若已知某条线段长度为定值时,常常利用三角形三线合一的性质,结合三角函数来解题:如,对于第③种情况,若AC=BC,过点C作CF⊥AB于点F,则可得BF=1/2AB,通过Rt△OBD及Rt△CBF中,cos∠1=BD/BO=BF/BC,同样也能很方便的解题.
【练习】如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动,当P、Q两点中其中一点到达终点时则停止运动.在P、Q两点移动的过程中,当△PQC为等腰三角形时,求t的值.
特别推荐:
扫描二维码,添加关注后,进入公众号,输入数字“1”可获得免费的《几何画板》使用实例视频教程(622分钟)的学习地址.
本公众号对应的QQ群:178733124(课件制作学习交流群).