【源头活水】差分卷积在计算机视觉中的应用
“问渠那得清如许,为有源头活水来”,通过前沿领域知识的学习,从其他研究领域得到启发,对研究问题的本质有更清晰的认识和理解,是自我提高的不竭源泉。为此,我们特别精选论文阅读笔记,开辟“源头活水”专栏,帮助你广泛而深入的阅读科研文献,敬请关注。
01
02
03
04
05
06
07
Reference:
[1] Timo Ojala, et al. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. TPAMI 2002.
[2] Zitong Yu, et al. Searching central difference convolutional networks for face anti-spoofing. CVPR 2020.
[3] Zitong Yu, et al. Nas-fas: Static-dynamic central difference network search for face anti-spoofing. TPAMI 2020.
[4] Juefei Xu, et al. Local binary convolutional neural networks. CVPR 2017.
[5] Shangzhen Luan, et al. Gabor convolutional networks. TIP 2018.
[6] Ramachandran Prajit, et al. Stand-alone self-attention in vision models. NeurIPS 2019.
[7] Zitong Yu, et al. Dual-Cross Central Difference Network for Face Anti-Spoofing. IJCAI 2021.
[8] Zhuo Su, et al. Pixel Difference Networks for Efficient Edge Detection. ICCV 2021 (Oral)
[9] Li Liu, et al. Extended local binary patterns for texture classification. Image and Vision Computing 2012.
[10] Zitong Yu, et al. Searching multi-rate and multi-modal temporal enhanced networks for gesture recognition. TIP 2021.
[11] Shuyang Sun, et al. Optical flow guided feature: A fast and robust motion representation for video action recognition. CVPR 2018.
[12] Myunggi Lee, et al. Motion feature network: Fixed motion filter for action recognition. ECCV 2018.
[13] Klimack, Jason. A Study on Different Architectures on a 3D Garment Reconstruction Network. MS thesis. Universitat Politècnica de Catalunya, 2021.
[14] Zabihi Samad, et al. A Compact Deep Architecture for Real-time Saliency Prediction. arXiv 2020.
[15] Zhao Yu, et al. Video-Based Physiological Measurement Using 3D Central Difference Convolution Attention Network. IJCB 2021.
[16] Zitong Yu, et al. Multi-modal face anti-spoofing based on central difference networks. CVPRW 2020.
[17] Haoyu Chen, et al. 2nd place scheme on action recognition track of ECCV 2020 VIPriors challenges: An efficient optical flow stream guided framework. arXiv 2020.
本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。
“源头活水”历史文章
ICML2021 | Self-Tuning: 如何减少对标记数据的需求?
MaskFormer: 语义分割是像素分类问题吗?
原型学习在Few-Shot语义分割中的使用
协作学习中的非预期特征泄露研究
基于对抗的迁移学习方法: DANN域对抗网络
TIP2021—重访CV经典: 首个无监督深度学习图像拼接框架
自步对比学习: 充分挖掘无监督学习样本
无监督学习: Kaiming一作 动量对比(MoCO)论文笔记
Mutual Mean-Teaching:为无监督学习提供更鲁棒的伪标签
Few-shot object detection论文整理(CVPR2021)
图神经网络也可以很快——Cluster-GCN
基于3D卷积神经网络的人体行为识别(3D CNN)
CVPR2021 | Variational Relational Point Completion Network
一种极简的深度子领域自适应方法DSAN
更多源头活水专栏文章,
请点击文章底部“阅读原文”查看
分享、在看,给个三连击呗!