其他
【强基固本】深度学习必须掌握的 13 种概率分布
“强基固本,行稳致远”,科学研究离不开理论基础,人工智能学科更是需要数学、物理、神经科学等基础学科提供有力支撑,为了紧扣时代脉搏,我们推出“强基固本”专栏,讲解AI领域的基础知识,为你的科研学习提供助力,夯实理论基础,提升原始创新能力,敬请关注。
共轭意味着它有共轭分布的关系。
在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似然函数的共轭先验。共轭先验维基百科在这里(https://en.wikipedia.org/wiki/Conjugate_prior)。
多分类表示随机方差大于 2。 n 次意味着我们也考虑了先验概率 p(x)。 为了进一步了解概率,我建议阅读 [pattern recognition and machine learning,Bishop 2006]。
先验概率 p(x)不考虑伯努利分布。因此,如果我们对最大似然进行优化,那么我们很容易被过度拟合。 利用二元交叉熵对二项分类进行分类。它的形式与伯努利分布的负对数相同。
参数为 n 和 p 的二项分布是一系列 n 个独立实验中成功次数的离散概率分布。 二项式分布是指通过指定要提前挑选的数量而考虑先验概率的分布。
多伯努利称为分类分布。 交叉熵和采取负对数的多伯努利分布具有相同的形式。
β分布与二项分布和伯努利分布共轭。 利用共轭,利用已知的先验分布可以更容易地得到后验分布。 当β分布满足特殊情况(α=1,β=1)时,均匀分布是相同的。
dirichlet 分布与多项式分布是共轭的。 如果 k=2,则为β分布。
如果 gamma(a,1)/gamma(a,1)+gamma(b,1)与 beta(a,b)相同,则 gamma 分布为β分布。 指数分布和卡方分布是伽马分布的特例。
k 自由度的卡方分布是 k 个独立标准正态随机变量的平方和的分布。 卡方分布是 β 分布的特例
“强基固本”历史文章
第三代神经网络初探:脉冲神经网络(Spiking Neural Networks)
浅谈图像分割调优
理解Jacobian矩阵与行列式
理解Tensor Core
损失函数 | 交叉熵损失函数
多场景建模
深度学习优化背后包含哪些数学知识?
利用宇宙的能力来处理数据!「物理网络」远胜深度神经网络
入门 | 异常检测Anomaly Detection
通俗易懂的解释Sparse Convolution过程
现在的人工智能是否走上了数学的极端?
神经网络训练中的拓扑演化
一文详解colmap中的多视图重建算法原理
深度学习、计算机视觉面试题合集
更多强基固本专栏文章,
请点击文章底部“阅读原文”查看
分享、点赞、在看,给个三连击呗!