查看原文
其他

张靖华:一类二元接龙函数极值问题的构造性解法及推广

张靖华 邹生书数学 2022-07-17

请点击上方蓝色字体“邹生书数学”,订阅本微信公众号;

请点击右上角的“…”,发送给朋友或分享到朋友圈。


   公众号“邹生书数学”创建于2018年8月28日。    

开号宗旨:为热爱学习和研究的高中数学教师和教研员搭建学习交流平台,提升教学能力,促进专业发展。本公众号致力传播数学文化,发表教研成果,交流教学经验,探讨数学问题,展示解题方法,分享教学资源,为服务高中教学作贡献。

邹生书,男,1962年12月出生,中学数学高级教师。主要从事高中数学教学、高中数学解题研究和探究性学习等。从2007年8月到2018年8月,在《数学通讯》《数学教学》《中学数学》《中学数学教学》等,二十多种学术期刊上发表解题和探究性学习文章300余篇。


    公众号“邹生书数学”诚请高中数学教师、教研员和热爱数学的朋友不吝赐稿。来稿请注明实姓名、工作单位和联系方式,一般只接受word文档格式的电子稿件,文稿请认真审查,防止错漏,文责自负。

投稿邮箱:zoushengshu@163.com;

投稿微信号:13297228197。

本公众号对优秀作者和名师实行“双推学习”,在分享文章的同时推介作者简历,让读者朋友更好的了解作者的研究成果和研究方向,以便进一步研读作者的相关文章。

欢迎转载本公众号文章,转载请注明:

“文章来源:邹生书数学”等字样。

张靖华,中学数学教师,高级职称,中国数学学会会员,吉林市数学学会理事,中国数学学奥林匹克一级教练员.酷爱中等数学研究工作,曾在数学通讯、中学数学、数学学习与研究、数学教学研究、数学大世界等刊物上发表20余篇论文,代表作(处女作)《一对孪生命题的证明及推广》发表于苏州大学主办的《中学数学》1990年第3期.

一类二元接龙函数极值问题的构造性

解法及推广

张靖华

北京市海淀区水木龙华培训学校中关村北大街47号

中的后一个根号内的第一项是前一个根号内的末项,从第二项起至倒数第二项止,根号内的第二项是该根号内两个变量积的倍数.把形如这样的函数称之为接龙函数.求这类接龙函数的极值问题,无论是采用常规的初等数学方法,还是采用高等数学的微分法都很难奏效,本文将借助余弦定理,采用数形结合的构造性方法,给出接龙函数

在给定条件下的最值定理,并加以推广,再通过两个例题展示定理的使用方法.

参考文献

[1] 张靖华. 一类极值问题的构造性解法[J],中学数学,1991.4

   长按或扫描二维码关注本公众号!

作者近期文章链接

张靖华:一对孪生命题的证明及其推广

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存