其他
向大脑学习智能本质,探索通用 AI 的另一条可行路径
【观点速递】“大数据”、“大算力”和“大模型”,是近些年人工智能领域的热点词汇。在本届智源大会上发布的超大规模人工智能模型-“悟道2.0” ,是目前全球最大的超大规模人工智能模型,代表了通过“大数据+大算力+强算法”探索通用智能的最新成果。
与此同时,在这个追求“大”的时代,是否还存在其他道路和途径,来促进人工智能的发展和迈向通用智能的前沿探索?生命是智能的第一载体,在自然中已经有亿万年的进化历史。作为代表自然界拥有最通用智能的生物大脑,可以通过低功耗和少量后天数据就能实现比现有人工智能更加通用及实现复杂环境下复杂任务的智能行为。因此,探索生物大脑智能认知的底层机理和复杂行为背后的神经科学基础,对于探索智能的本质、揭示心智的奥秘,迈向未来的通用人工智能研究具有重要意义。
1
2
3
4
5
现有的深度卷积网络只是在形式上借鉴了人类大脑视觉皮层的层状结构,模拟了大脑的部分视觉功能,却未能深入地理解大脑视觉系统运作背后的机理。
人类视觉系统对中央视野的输入存在反馈调节等机制,能在有限输入的环境中兼顾鲁棒性与通用性,并实现视觉理解,而对外周视野的加工则表现出与现有人工智能类似的不稳定性。
6
7
8
第一,推动神经结构重建的高精度电镜细胞膜标注数据集U-RISC开源开放; 第二,研发了适用于神经建模的通用神经模拟调优工具GeneralNeural Estimator; 第三,基于“天演”构建了超大规模的生物大脑模型(一百万神经元的小鼠纹状体),为欧盟脑计划已发表模型的6倍。