查看原文
其他

一条命令轻松绘制CNS顶级配图-ggpubr

2017-12-28 taoyan 宏基因组


本文转载自“EasyChart”,己获授权。本平台编辑对内容进行测试、修改和补充。


Hadley Wickham创建的可视化包ggplot2可以流畅地进行优美的可视化,但是如果要通过ggplot2定制一套图形,尤其是适用于杂志期刊等出版物的图形,对于那些没有深入了解ggplot2的人来说就有点困难了,ggplot2的部分语法是很晦涩的。为此Alboukadel Kassambara创建了基于ggplot2的可视化包ggpubr用于绘制符合出版物要求的图形。

安装及加载ggpubr包

# 直接从CRAN安装 install.packages("ggpubr", repo="http://cran.us.r-project.org") # 从GitHub上安装最新版本 install.packages("devtools", repo="http://cran.us.r-project.org") library(devtools) install_github("kassambara/ggpubr") # 安装完之后直接加载就行: library(ggpubr)

ggpubr可绘制图形

ggpubr可绘制大部分我们常用的图形,下面逐个介绍。

分布图(Distribution)

带有均值线和地毯线的密度图

#构建数据集 set.seed(123) df <- data.frame( sex=factor(rep(c("f", "M"), each=200)),                  weight=c(rnorm(200, 55), rnorm(200, 58))) # 预览数据格式 head(df) # 绘制密度图 ggdensity(df, x="weight", add = "mean", rug = TRUE, color = "sex", fill = "sex",          palette = c("#00AFBB", "#E7B800"))

图1. 密度图展示不同性别分组下体重的分布,X轴为体重,Y轴为自动累计的密度,X轴上添加地毯线进一步呈现样本的分布;按性别分别组标记轮廓线颜色,再按性别填充色展示各组的分布,使用palette自定义颜色,是不是很舒服。


带有均值线和边际地毯线的直方图

gghistogram(df, x="weight", add = "mean", rug = TRUE, color = "sex", fill = "sex",            palette = c("#00AFBB", "#E7B800"))


图2. 带有均值线和边际地毯线的直方图,只是把密度比例还原为了原始数据counts值

箱线/小提琴图(barplot/violinplot)

箱线图+分组形状+统计

#加载数据集ToothGrowth data("ToothGrowth") df1 <- ToothGrowth head(df1) p <- ggboxplot(df1, x="dose", y="len", color = "dose",               palette = c("#00AFBB", "#E7B800", "#FC4E07"),               add = "jitter", shape="dose")#增加了jitter点,点shape由dose映射 p


图3. 箱线图按组着色,同时样本点标记不同形状可以一步区分组或批次


箱线图+分组形状+统计

# 增加不同组间的p-value值,可以自定义需要标注的组间比较 my_comparisons <- list(c("0.5", "1"), c("1", "2"), c("0.5", "2")) p+stat_compare_means(comparisons = my_comparisons)+ #不同组间的比较  stat_compare_means(label.y = 50)


图4. stat_compare_means添加组间比较连线和统计P值


内有箱线图的小提琴图+星标记

ggviolin(df1, x="dose", y="len", fill = "dose",         palette = c("#00AFBB", "#E7B800", "#FC4E07"),         add = "boxplot", add.params = list(fill="white"))+  stat_compare_means(comparisons = my_comparisons, label = "p.signif")+#label这里表示选择显著性标记(星号)  stat_compare_means(label.y = 50)


图5. ggviolin绘制小提琴图, add = “boxplot”中间再添加箱线图,stat_compare_means中,设置lable=”p.signif”,即可添加星添加组间比较连线和统计P值按星分类。

条形/柱状图(barplot)

data("mtcars") df2 <- mtcars df2$cyl <- factor(df2$cyl) df2$name <- rownames(df2) #添加一行name head(df2[, c("name", "wt", "mpg", "cyl")]) ggbarplot(df2, x="name", y="mpg", fill = "cyl", color = "white",          palette = "npg", #杂志nature的配色          sort.val = "desc", #下降排序          sort.by.groups=FALSE, #不按组排序          x.text.angle=60)


图6. 柱状图展示不同车的速度,按cyl为分组信息进行填充颜色,颜色按nature配色方法(支持 ggsci包中的本色方案,如: “npg”, “aaas”, “lancet”, “jco”, “ucscgb”, “uchicago”, “simpsons” and “rickandmorty”),按数值降序排列。

# 按组进行排序 ggbarplot(df2, x="name", y="mpg", fill = "cyl", color = "white",          palette = "aaas", #杂志Science的配色          sort.val = "asc", #上升排序,区别于desc,具体看图演示          sort.by.groups=TRUE,x.text.angle=60) #按组排序 x.text.angle=90


图7. 由上图中颜色改为Sciences配色方案(为什么感觉nature和sciences的配色方案没有文章里的看着舒服呢?),按组升序排布,且调整x轴标签60度角防止重叠。

偏差图

偏差图展示了与参考值之间的偏差

df2$mpg_z <- (df2$mpg-mean(df2$mpg))/sd(df2$mpg) # 相当于Zscore标准化,减均值,除标准差 df2$mpg_grp <- factor(ifelse(df2$mpg_z<0, "low", "high"), levels = c("low", "high")) head(df2[, c("name", "wt", "mpg", "mpg_grp", "cyl")]) ggbarplot(df2, x="name", y="mpg_z", fill = "mpg_grp", color = "white",          palette = "jco", sort.val = "asc", sort.by.groups = FALSE,          x.text.angle=60, ylab = "MPG z-score", xlab = FALSE, legend.title="MPG Group")


图8. 基于Zscore的柱状图,就是原始值减均值,再除标准差。按jco杂志配色方案,升序排列,不按组排列。

坐标轴变换

ggbarplot(df2, x="name", y="mpg_z", fill = "mpg_grp", color = "white",          palette = "jco", sort.val = "desc", sort.by.groups = FALSE,          x.text.angle=90, ylab = "MPG z-score", xlab = FALSE,          legend.title="MPG Group", rotate=TRUE, ggtheme = theme_minimal()) # rotate设置x/y轴对换


图9. rotate=TRUE翻转坐标轴,柱状图秒变条形图

棒棒糖图(Lollipop chart)

棒棒图可以代替条形图展示数据

ggdotchart(df2, x="name", y="mpg", color = "cyl",           palette = c("#00AFBB", "#E7B800", "#FC4E07"),           sorting = "ascending",           add = "segments", ggtheme = theme_pubr())


图10. 柱状图太多了单调,改用棒棒糖图添加多样性


更多参数的设置

ggdotchart(df2, x="name", y="mpg", color = "cyl",           palette = c("#00AFBB", "#E7B800", "#FC4E07"),           sorting = "descending", add = "segments", rotate = TRUE,           group = "cyl", dot.size = 6,           label = round(df2$mpg), font.label = list(color="white",           size=9, vjust=0.5), ggtheme = theme_pubr())


图11. 棒棒糖图简单调整,rotate = TRUE转换坐标轴, dot.size = 6调整糖的大小,label = round()添加糖心中的数值,font.label进一步设置字体样式


棒棒糖偏差图

ggdotchart(df2, x="name", y="mpg_z", color = "cyl",           palette = c("#00AFBB", "#E7B800", "#FC4E07"),           sorting = "descending", add = "segment",           add.params = list(color="lightgray", size=2),           group = "cyl", dot.size = 6, label = round(df2$mpg_z, 1),           font.label = list(color="white", size=9, vjust=0.5),           ggtheme = theme_pubr())+ geom_line(yintercept=0, linetype=2, color="lightgray")


图12. 同柱状图类似,用Z-score的值代替原始值绘图。


Cleveland点图

ggdotchart(df2, x="name", y="mpg", color = "cyl",           palette = c("#00AFBB", "#E7B800", "#FC4E07"),           sorting = "descending",           rotate = TRUE, dot.size = 2, y.text.col=TRUE,           ggtheme = theme_pubr())+ theme_cleveland()

 

图13. theme_cleveland()主题可设置为Cleveland点图样式

我测试的工作环境

sessionInfo()

R version 3.4.1 (2017-06-30) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 16.04.3 LTS Matrix products: default BLAS: /usr/lib/openblas-base/libblas.so.3 LAPACK: /usr/lib/libopenblasp-r0.2.18.so locale: [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8     [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8    LC_PAPER=en_US.UTF-8       LC_NAME=C                 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       attached base packages: [1] stats     graphics  grDevices utils     datasets  methods   base     other attached packages: [1] bindrcpp_0.2     ggpubr_0.1.6.999 magrittr_1.5     ggplot2_2.2.1    devtools_1.13.4 loaded via a namespace (and not attached): [1] Rcpp_0.12.14     bindr_0.1        munsell_0.4.3    colorspace_1.3-2 R6_2.2.2         rlang_0.1.4      httr_1.3.1       [8] plyr_1.8.4       dplyr_0.7.4      tools_3.4.1      grid_3.4.1       gtable_0.2.0     git2r_0.19.0     withr_2.1.0     [15] lazyeval_0.2.1   digest_0.6.12    assertthat_0.2.0 tibble_1.3.4     ggsignif_0.4.0   ggsci_2.8        purrr_0.2.4     [22] curl_3.0         memoise_1.1.0    glue_1.2.0       labeling_0.3     compiler_3.4.1   scales_0.5.0     pkgconfig_2.0.1


猜你喜欢

写在后面

为促进读者交流、加速科学问题解决,我们建立了“宏基因组”专业讨论群,目前己有八百多名一线科研人员加入。参与讨论,获得专业指导、问题解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职务”。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍末解决群内讨论。问题不私聊,帮助同行。

学习16S扩增子、宏基因组科研思路和分析实战,关注“宏基因组”

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存