查看原文
其他

ggalluvial:冲击图展示组间变化、时间序列和复杂多属性alluvial diagram

2018-02-20 朱微金 宏基因组

感谢“宏基因组0”群友李海敏、沈伟推荐此包绘制堆叠柱状图各成分连线:突出展示组间物种丰度变化

冲击图(alluvial diagram)是流程图(flow diagram)的一种,最初开发用于代表网络结构的时间变化。

实例1. neuroscience coalesced from other related disciplines to form its own field. From PLoS ONE 5(1): e8694 (2010)

实例2. Sciences封面哈扎人肠道菌群 图1中的C/D就使用了3个冲击图。详见3分和30分文章差距在哪里?

ggalluvial是一个基于ggplot2的扩展包,专门用于快速绘制冲击图(alluvial diagram),有些人也叫它桑基图(Sankey diagram),但两者略有区别,将来我们会介绍riverplot包绘制桑基图。

软件源代码位于Github: https://github.com/corybrunson/ggalluvial

CRNA官方演示教程: https://cran.r-project.org/web/packages/ggalluvial/vignettes/ggalluvial.html

安装

以下三种方装方式,三选1:

# 国内用户推荐清华镜像站 site="https://mirrors.tuna.tsinghua.edu.cn/CRAN" # 安装稳定版(推荐) install.packages("ggalluvial", repo=site) # 安装开发版(连github不稳定有时间下载失败,多试几次可以成功) devtools::install_github("corybrunson/ggalluvial", build_vignettes = TRUE) # 安装新功能最优版 devtools::install_github("corybrunson/ggalluvial", ref = "optimization")

显示帮助文档

使用vignette查看演示教程

# 查看教程 vignette(topic = "ggalluvial", package = "ggalluvial")

接下来我们的演示均基于此官方演示教程,我的主要贡献是翻译与代码注释。

基于ggplot2的冲击图

原作者:Jason Cory Brunson, 更新日期:2018-02-11

1. 最简单的示例

基于泰坦尼克事件人员统计绘制性别与舱位和年龄的关系。

# 加载包 library(ggalluvial) # 转换内部数据为数据框,宽表格模式 titanic_wide <- data.frame(Titanic) # 显示数据格式 head(titanic_wide) #>   Class    Sex   Age Survived Freq #> 1   1st   Male Child       No    0 #> 2   2nd   Male Child       No    0 #> 3   3rd   Male Child       No   35 #> 4  Crew   Male Child       No    0 #> 5   1st Female Child       No    0 #> 6   2nd Female Child       No    0 # 绘制性别与舱位和年龄的关系 ggplot(data = titanic_wide,       aes(axis1 = Class, axis2 = Sex, axis3 = Age,           weight = Freq)) +  scale_x_discrete(limits = c("Class", "Sex", "Age"), expand = c(.1, .05)) +  geom_alluvium(aes(fill = Survived)) +  geom_stratum() + geom_text(stat = "stratum", label.strata = TRUE) +  theme_minimal() +  ggtitle("passengers on the maiden voyage of the Titanic",          "stratified by demographics and survival")

具体参考说明:data设置数据源,axis设置显示的柱,weight为数值,geom_alluvium为冲击图组间面积连接并按生存率比填充分组,geom_stratum()每种有柱状图,geom_text()显示柱状图中标签,theme_minimal()主题样式的一种,ggtitle()设置图标题

图1. 展示性别与舱位和年龄的关系及存活率比例

我们发现上图居然画的是宽表格模式下的数据,而通常ggplot2处理都是长表格模式,如何转换呢?

to_loades转换为长表格

# 长表格模式,to_loades多组组合,会生成alluvium和stratum列。主分组位于命名的key列中 titanic_long <- to_lodes(data.frame(Titanic),                         key = "Demographic",                         axes = 1:3) head(titanic_long) ggplot(data = titanic_long,       aes(x = Demographic, stratum = stratum, alluvium = alluvium,           weight = Freq, label = stratum)) +  geom_alluvium(aes(fill = Survived)) +  geom_stratum() + geom_text(stat = "stratum") +  theme_minimal() +  ggtitle("passengers on the maiden voyage of the Titanic",          "stratified by demographics and survival")

产生和上图一样的图,只是数据源格式不同。

2. 输入数据格式

定义一种Alluvial宽表格

# 显示数据格式 head(as.data.frame(UCBAdmissions), n = 12) ##       Admit Gender Dept Freq ## 1  Admitted   Male    A  512 ## 2  Rejected   Male    A  313 ## 3  Admitted Female    A   89 ## 4  Rejected Female    A   19 ## 5  Admitted   Male    B  353 ## 6  Rejected   Male    B  207 ## 7  Admitted Female    B   17 ## 8  Rejected Female    B    8 ## 9  Admitted   Male    C  120 ## 10 Rejected   Male    C  205 ## 11 Admitted Female    C  202 ## 12 Rejected Female    C  391 # 判断数据格式 is_alluvial(as.data.frame(UCBAdmissions), logical = FALSE, silent = TRUE) ## [1] "alluvia"

查看性别与专业间关系,并按录取情况分组

ggplot(as.data.frame(UCBAdmissions),       aes(weight = Freq, axis1 = Gender, axis2 = Dept)) +  geom_alluvium(aes(fill = Admit), width = 1/12) +  geom_stratum(width = 1/12, fill = "black", color = "grey") +  geom_label(stat = "stratum", label.strata = TRUE) +  scale_x_continuous(breaks = 1:2, labels = c("Gender", "Dept")) +  scale_fill_brewer(type = "qual", palette = "Set1") +  ggtitle("UC Berkeley admissions and rejections, by sex and department")

3. 三类型间关系,按重点着色

Titanic按生存,性别,舱位分类查看关系,并按舱位填充色

ggplot(as.data.frame(Titanic),       aes(weight = Freq,           axis1 = Survived, axis2 = Sex, axis3 = Class)) +  geom_alluvium(aes(fill = Class),                width = 0, knot.pos = 0, reverse = FALSE) +  guides(fill = FALSE) +  geom_stratum(width = 1/8, reverse = FALSE) +  geom_text(stat = "stratum", label.strata = TRUE, reverse = FALSE) +  scale_x_continuous(breaks = 1:3, labels = c("Survived", "Sex", "Class")) +  coord_flip() +  ggtitle("Titanic survival by class and sex")

4. 长表格数据

# to_lodes转换为长表格 UCB_lodes <- to_lodes(as.data.frame(UCBAdmissions), axes = 1:3) head(UCB_lodes, n = 12) ##    Freq alluvium     x  stratum ## 1   512        1 Admit Admitted ## 2   313        2 Admit Rejected ## 3    89        3 Admit Admitted ## 4    19        4 Admit Rejected ## 5   353        5 Admit Admitted ## 6   207        6 Admit Rejected ## 7    17        7 Admit Admitted ## 8     8        8 Admit Rejected ## 9   120        9 Admit Admitted ## 10  205       10 Admit Rejected ## 11  202       11 Admit Admitted ## 12  391       12 Admit Rejected # 判断是否符合格式要求 is_alluvial(UCB_lodes, logical = FALSE, silent = TRUE) ## [1] "alluvia"

主要列说明:

  • x, 主要的分类,即X轴上每个柱

  • stratum, 主要分类中的分组

  • alluvium, 连接图的索引

5. 绘制非等高冲击图

以各国难民数据为例,观察多国难民数量随时间变化

data(Refugees, package = "alluvial") country_regions <- c(  Afghanistan = "Middle East",  Burundi = "Central Africa",  `Congo DRC` = "Central Africa",  Iraq = "Middle East",  Myanmar = "Southeast Asia",  Palestine = "Middle East",  Somalia = "Horn of Africa",  Sudan = "Central Africa",  Syria = "Middle East",  Vietnam = "Southeast Asia" ) Refugees$region <- country_regions[Refugees$country] ggplot(data = Refugees,       aes(x = year, weight = refugees, alluvium = country)) +  geom_alluvium(aes(fill = country, colour = country),                alpha = .75, decreasing = FALSE) +  scale_x_continuous(breaks = seq(2003, 2013, 2)) +  theme(axis.text.x = element_text(angle = -30, hjust = 0)) +  scale_fill_brewer(type = "qual", palette = "Set3") +  scale_color_brewer(type = "qual", palette = "Set3") +  facet_wrap(~ region, scales = "fixed") +  ggtitle("refugee volume by country and region of origin")

6. 等高非等量关系

不同学期学生学习科目的变化

data(majors) majors$curriculum <- as.factor(majors$curriculum) ggplot(majors,       aes(x = semester, stratum = curriculum, alluvium = student,           fill = curriculum, label = curriculum)) +  scale_fill_brewer(type = "qual", palette = "Set2") +  geom_flow(stat = "alluvium", lode.guidance = "rightleft",            color = "darkgray") +  geom_stratum() +  theme(legend.position = "bottom") +  ggtitle("student curricula across several semesters")

7. 工作状态时间变化图

data(vaccinations) levels(vaccinations$response) <- rev(levels(vaccinations$response)) ggplot(vaccinations,       aes(x = survey, stratum = response, alluvium = subject,           weight = freq,           fill = response, label = response)) +  geom_flow() +  geom_stratum(alpha = .5) +  geom_text(stat = "stratum", size = 3) +  theme(legend.position = "none") +  ggtitle("vaccination survey responses at three points in time")

8. 分类学门水平相对丰度实战

# 实战1. 组间丰度变化 # 编写测试数据 df=data.frame(  Phylum=c("Ruminococcaceae","Bacteroidaceae","Eubacteriaceae","Lachnospiraceae","Porphyromonadaceae"),  GroupA=c(37.7397,31.34317,222.08827,5.08956,3.7393),  GroupB=c(113.2191,94.02951,66.26481,15.26868,11.2179),  GroupC=c(123.2191,94.02951,46.26481,35.26868,1.2179),  GroupD=c(37.7397,31.34317,222.08827,5.08956,3.7393) ) # 数据转换长表格 library(reshape2) melt_df = melt(df) # 绘制分组对应的分类学,有点像circos ggplot(data = melt_df,       aes(axis1 = Phylum, axis2 = variable,           weight = value)) +  scale_x_discrete(limits = c("Phylum", "variable"), expand = c(.1, .05)) +  geom_alluvium(aes(fill = Phylum)) +  geom_stratum() + geom_text(stat = "stratum", label.strata = TRUE) +  theme_minimal() +  ggtitle("Phlyum abundance in each group")

绘制分组对应的分类学,有点像circos

# 组间各丰度变化 ggplot(data = melt_df,       aes(x = variable, weight = value, alluvium = Phylum)) +  geom_alluvium(aes(fill = Phylum, colour = Phylum, colour = Phylum),                alpha = .75, decreasing = FALSE) +  theme_minimal() +  theme(axis.text.x = element_text(angle = -30, hjust = 0)) +  ggtitle("Phylum change among groups")

组间各丰度变化,如果组为时间效果更好

Reference

# 如何引用 citation("ggalluvial")

Jason Cory Brunson (2017). ggalluvial: Alluvial Diagrams in ‘ggplot2’. R package version 0.5.0.
 https://CRAN.R-project.org/package=ggalluvial

https://en.wikipedia.org/wiki/Alluvial_diagram

ggalluvial包源码:http://corybrunson.github.io/ggalluvial/index.html

官方示例 Alluvial Diagrams in ggplot2 https://cran.r-project.org/web/packages/ggalluvial/vignettes/ggalluvial.html

猜你喜欢

写在后面

为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外120+ PI,1200+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍末解决群内讨论,问题不私聊,帮助同行。

学习16S扩增子、宏基因组科研思路和分析实战,关注“宏基因组”

点击阅读原文,跳转最新文章目录阅读

100 34769 100 34769 0 0 9084 0 0:00:03 0:00:03 --:--:-- 9082 * Connection #0 to host 37.48.118.90 left intact

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存