查看原文
其他

宽数据变为长数据的5种情况!

阿越就是我 医学和生信笔记 2023-02-25
关注公众号,发送R语言,获取学习资料!


  • 简介

  • 加载R包

  • `pivot_longer`

    • 列名是字符型数据

    • 列名是数值型数据

    • 列名中含有多个变量

    • 每一行有多个观测

    • 列名有重复


简介

主要介绍使用pivot_longerpivot_wider进行长宽数据转换,这两个函数都是来自于tidyr包,是gatherspread的升级,比原函数功能更加强大,且参数更加清晰直观好记。

今天先学习宽数据变为长数据的5种情况!

加载R包

library(tidyr)
library(dplyr)
## 
## 载入程辑包:'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)

pivot_longer

宽数据变为长数据,宽数据通常是直接输入的原始数据,宽数据方便录入原始资料,但是不便于数据分析。因此在分析时需要变为长数据。

列名是字符型数据

这是一个宽数据,是一个关于不同季节和宗教信仰的人们的收入数据。

relig_income
## # A tibble: 18 x 11
##    religion `<$10k` `$10-20k` `$20-30k` `$30-40k` `$40-50k` `$50-75k` `$75-100k`
##    <chr>      <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>      <dbl>
##  1 Agnostic      27        34        60        81        76       137        122
##  2 Atheist       12        27        37        52        35        70         73
##  3 Buddhist      27        21        30        34        33        58         62
##  4 Catholic     418       617       732       670       638      1116        949
##  5 Don’t k~      15        14        15        11        10        35         21
##  6 Evangel~     575       869      1064       982       881      1486        949
##  7 Hindu          1         9         7         9        11        34         47
##  8 Histori~     228       244       236       238       197       223        131
##  9 Jehovah~      20        27        24        24        21        30         15
## 10 Jewish        19        19        25        25        30        95         69
## 11 Mainlin~     289       495       619       655       651      1107        939
## 12 Mormon        29        40        48        51        56       112         85
## 13 Muslim         6         7         9        10         9        23         16
## 14 Orthodox      13        17        23        32        32        47         38
## 15 Other C~       9         7        11        13        13        14         18
## 16 Other F~      20        33        40        46        49        63         46
## 17 Other W~       5         2         3         4         2         7          3
## 18 Unaffil~     217       299       374       365       341       528        407
## # ... with 3 more variables: $100-150k <dbl>, >150k <dbl>,
## #   Don't know/refused <dbl>

这个数据包含3个变量:

  • religion:宗教
  • income:分布在不同的列名中
  • count:单元格中的数字

我们使用pivot_longer把它变为长数据,这是一个最简单的宽数据变长数据的示例:

relig_income %>% 
  pivot_longer(cols = !religion, 
               names_to = "income",
               values_to = "count")
## # A tibble: 180 x 3
##    religion income             count
##    <chr>    <chr>              <dbl>
##  1 Agnostic <$10k                 27
##  2 Agnostic $10-20k               34
##  3 Agnostic $20-30k               60
##  4 Agnostic $30-40k               81
##  5 Agnostic $40-50k               76
##  6 Agnostic $50-75k              137
##  7 Agnostic $75-100k             122
##  8 Agnostic $100-150k            109
##  9 Agnostic >150k                 84
## 10 Agnostic Don't know/refused    96
## # ... with 170 more rows
  • pivot_longer的第一个参数是数据集,这里是relig_income,已省略,
  • 第二个参数是哪些列需要变形,在这里是除了religion的所有列,
  • 第三个参数是需要创建的列名,用来存放数据集中原有的列名,这里是income
  • 第四个参数是需要创建的用来存放值的列名,这里是count

新创建的两列incomecount都不是原来数据集有的,因此需要加引号。

列名是数值型数据

使用billboard数据集,列名中含有数字,而不是纯字符。

billboard
## # A tibble: 317 x 79
##    artist   track   date.entered   wk1   wk2   wk3   wk4   wk5   wk6   wk7   wk8
##    <chr>    <chr>   <date>       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 2 Pac    Baby D~ 2000-02-26      87    82    72    77    87    94    99    NA
##  2 2Ge+her  The Ha~ 2000-09-02      91    87    92    NA    NA    NA    NA    NA
##  3 3 Doors~ Krypto~ 2000-04-08      81    70    68    67    66    57    54    53
##  4 3 Doors~ Loser   2000-10-21      76    76    72    69    67    65    55    59
##  5 504 Boyz Wobble~ 2000-04-15      57    34    25    17    17    31    36    49
##  6 98^0     Give M~ 2000-08-19      51    39    34    26    26    19     2     2
##  7 A*Teens  Dancin~ 2000-07-08      97    97    96    95   100    NA    NA    NA
##  8 Aaliyah  I Don'~ 2000-01-29      84    62    51    41    38    35    35    38
##  9 Aaliyah  Try Ag~ 2000-03-18      59    53    38    28    21    18    16    14
## 10 Adams, ~ Open M~ 2000-08-26      76    76    74    69    68    67    61    58
## # ... with 307 more rows, and 68 more variables: wk9 <dbl>, wk10 <dbl>,
## #   wk11 <dbl>, wk12 <dbl>, wk13 <dbl>, wk14 <dbl>, wk15 <dbl>, wk16 <dbl>,
## #   wk17 <dbl>, wk18 <dbl>, wk19 <dbl>, wk20 <dbl>, wk21 <dbl>, wk22 <dbl>,
## #   wk23 <dbl>, wk24 <dbl>, wk25 <dbl>, wk26 <dbl>, wk27 <dbl>, wk28 <dbl>,
## #   wk29 <dbl>, wk30 <dbl>, wk31 <dbl>, wk32 <dbl>, wk33 <dbl>, wk34 <dbl>,
## #   wk35 <dbl>, wk36 <dbl>, wk37 <dbl>, wk38 <dbl>, wk39 <dbl>, wk40 <dbl>,
## #   wk41 <dbl>, wk42 <dbl>, wk43 <dbl>, wk44 <dbl>, wk45 <dbl>, wk46 <dbl>, ...

现在我们需要把不同的周放在一列中,因为它其实是一个变量,然后不同的周下面的值也放在一列中,同时我们发现周下面的数字有一些缺失值,我们想丢掉含有这些缺失值的行。

billboard %>% 
  pivot_longer(cols = starts_with("wk"),
               names_to = "week",
               values_to = "rank",
               values_drop_na = T
               )
## # A tibble: 5,307 x 5
##    artist  track                   date.entered week   rank
##    <chr>   <chr>                   <date>       <chr> <dbl>
##  1 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk1      87
##  2 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk2      82
##  3 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk3      72
##  4 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk4      77
##  5 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk5      87
##  6 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk6      94
##  7 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk7      99
##  8 2Ge+her The Hardest Part Of ... 2000-09-02   wk1      91
##  9 2Ge+her The Hardest Part Of ... 2000-09-02   wk2      87
## 10 2Ge+her The Hardest Part Of ... 2000-09-02   wk3      92
## # ... with 5,297 more rows

假如我们想知道每首歌在表单上待了几周,我们可以把week这一列变为数值型,这需要另外的参数names_prefix/names_transform

billboard %>% 
  pivot_longer(
    cols = starts_with("wk"),
    names_to = "week",
    values_to = "rank",
    values_drop_na = T,
    names_prefix = "wk"# 数字前面的前缀是什么
    names_transform = list(week = as.integer) # 对新建的week做什么操作
  )
## # A tibble: 5,307 x 5
##    artist  track                   date.entered  week  rank
##    <chr>   <chr>                   <date>       <int> <dbl>
##  1 2 Pac   Baby Don't Cry (Keep... 2000-02-26       1    87
##  2 2 Pac   Baby Don't Cry (Keep... 2000-02-26       2    82
##  3 2 Pac   Baby Don't Cry (Keep... 2000-02-26       3    72
##  4 2 Pac   Baby Don't Cry (Keep... 2000-02-26       4    77
##  5 2 Pac   Baby Don't Cry (Keep... 2000-02-26       5    87
##  6 2 Pac   Baby Don't Cry (Keep... 2000-02-26       6    94
##  7 2 Pac   Baby Don't Cry (Keep... 2000-02-26       7    99
##  8 2Ge+her The Hardest Part Of ... 2000-09-02       1    91
##  9 2Ge+her The Hardest Part Of ... 2000-09-02       2    87
## 10 2Ge+her The Hardest Part Of ... 2000-09-02       3    92
## # ... with 5,297 more rows

或者你可以直接使用readr包中的parse_number()函数直接解析week这一列。

billboard %>% 
  pivot_longer(
    cols = starts_with("wk"), 
    names_to = "week"
    names_transform = list(week = readr::parse_number), # 对新建的week这一列解析
    values_to = "rank",
    values_drop_na = TRUE,
  )
## # A tibble: 5,307 x 5
##    artist  track                   date.entered  week  rank
##    <chr>   <chr>                   <date>       <dbl> <dbl>
##  1 2 Pac   Baby Don't Cry (Keep... 2000-02-26       1    87
##  2 2 Pac   Baby Don't Cry (Keep... 2000-02-26       2    82
##  3 2 Pac   Baby Don't Cry (Keep... 2000-02-26       3    72
##  4 2 Pac   Baby Don't Cry (Keep... 2000-02-26       4    77
##  5 2 Pac   Baby Don't Cry (Keep... 2000-02-26       5    87
##  6 2 Pac   Baby Don't Cry (Keep... 2000-02-26       6    94
##  7 2 Pac   Baby Don't Cry (Keep... 2000-02-26       7    99
##  8 2Ge+her The Hardest Part Of ... 2000-09-02       1    91
##  9 2Ge+her The Hardest Part Of ... 2000-09-02       2    87
## 10 2Ge+her The Hardest Part Of ... 2000-09-02       3    92
## # ... with 5,297 more rows

列名中含有多个变量

在整洁数据的概念中,每一列都应该是一个变量,假如在列名中含有多个变量,那么我们就需要把这些列名变为不同的列,以who数据集为例。

who
## # A tibble: 7,240 x 60
##    country  iso2  iso3   year new_sp_m014 new_sp_m1524 new_sp_m2534 new_sp_m3544
##    <chr>    <chr> <chr> <int>       <int>        <int>        <int>        <int>
##  1 Afghani~ AF    AFG    1980          NA           NA           NA           NA
##  2 Afghani~ AF    AFG    1981          NA           NA           NA           NA
##  3 Afghani~ AF    AFG    1982          NA           NA           NA           NA
##  4 Afghani~ AF    AFG    1983          NA           NA           NA           NA
##  5 Afghani~ AF    AFG    1984          NA           NA           NA           NA
##  6 Afghani~ AF    AFG    1985          NA           NA           NA           NA
##  7 Afghani~ AF    AFG    1986          NA           NA           NA           NA
##  8 Afghani~ AF    AFG    1987          NA           NA           NA           NA
##  9 Afghani~ AF    AFG    1988          NA           NA           NA           NA
## 10 Afghani~ AF    AFG    1989          NA           NA           NA           NA
## # ... with 7,230 more rows, and 52 more variables: new_sp_m4554 <int>,
## #   new_sp_m5564 <int>, new_sp_m65 <int>, new_sp_f014 <int>,
## #   new_sp_f1524 <int>, new_sp_f2534 <int>, new_sp_f3544 <int>,
## #   new_sp_f4554 <int>, new_sp_f5564 <int>, new_sp_f65 <int>,
## #   new_sn_m014 <int>, new_sn_m1524 <int>, new_sn_m2534 <int>,
## #   new_sn_m3544 <int>, new_sn_m4554 <int>, new_sn_m5564 <int>,
## #   new_sn_m65 <int>, new_sn_f014 <int>, new_sn_f1524 <int>, ...

new_sp_mo14newrel_f65这几列的列名都包含了4个变量:

  • new/new_代表了一个变量,但是所有的都是new,暂且不管,
  • sp/rel/ep也是一个变量,代表是如何被诊断的,
  • m/f是性别,也是一个变量,
  • 014/1524/2535/3544/4554/65代表年龄范围,也是一个变量。

也就是说这些列应该被重组为4列,可以使用正则表达式提取这些列的规律,然后进行重组,这里只分了3列:

who %>% pivot_longer(
  cols = new_sp_m014:newrel_f65,
  names_to = c("diagnosis","gender","age"), # new那一列没写,因为都一样
  names_pattern = "new_?(.*)_(.)(.*)"# 正则表达式3个括号对应上面3个列名
  values_to = "count"
)
## # A tibble: 405,440 x 8
##    country     iso2  iso3   year diagnosis gender age   count
##    <chr>       <chr> <chr> <int> <chr>     <chr>  <chr> <int>
##  1 Afghanistan AF    AFG    1980 sp        m      014      NA
##  2 Afghanistan AF    AFG    1980 sp        m      1524     NA
##  3 Afghanistan AF    AFG    1980 sp        m      2534     NA
##  4 Afghanistan AF    AFG    1980 sp        m      3544     NA
##  5 Afghanistan AF    AFG    1980 sp        m      4554     NA
##  6 Afghanistan AF    AFG    1980 sp        m      5564     NA
##  7 Afghanistan AF    AFG    1980 sp        m      65       NA
##  8 Afghanistan AF    AFG    1980 sp        f      014      NA
##  9 Afghanistan AF    AFG    1980 sp        f      1524     NA
## 10 Afghanistan AF    AFG    1980 sp        f      2534     NA
## # ... with 405,430 more rows

假如我们知道自己的数据情况,比如这个数据,gender这一列和age这一列,可以变为因子型,这样方便后面的分析:

who %>% pivot_longer(
  cols = new_sp_m014:newrel_f65,
  names_to = c("diagnosis""gender""age"), 
  names_pattern = "new_?(.*)_(.)(.*)",
  names_transform = list(
    gender = ~ readr::parse_factor(.x, levels = c("f""m")),
    age = ~ readr::parse_factor(
      .x,
      levels = c("014""1524""2534""3544""4554""5564""65"), 
      ordered = TRUE
    )
  ),
  values_to = "count",
)
## # A tibble: 405,440 x 8
##    country     iso2  iso3   year diagnosis gender age   count
##    <chr>       <chr> <chr> <int> <chr>     <fct>  <ord> <int>
##  1 Afghanistan AF    AFG    1980 sp        m      014      NA
##  2 Afghanistan AF    AFG    1980 sp        m      1524     NA
##  3 Afghanistan AF    AFG    1980 sp        m      2534     NA
##  4 Afghanistan AF    AFG    1980 sp        m      3544     NA
##  5 Afghanistan AF    AFG    1980 sp        m      4554     NA
##  6 Afghanistan AF    AFG    1980 sp        m      5564     NA
##  7 Afghanistan AF    AFG    1980 sp        m      65       NA
##  8 Afghanistan AF    AFG    1980 sp        f      014      NA
##  9 Afghanistan AF    AFG    1980 sp        f      1524     NA
## 10 Afghanistan AF    AFG    1980 sp        f      2534     NA
## # ... with 405,430 more rows

每一行有多个观测

在整洁数据中,每行一个观测,每列一个变量。

有时一行会有多个观测,你想创建的新列的名字是原数据列名的一部分。

family <- tribble(
  ~family,  ~dob_child1,  ~dob_child2, ~gender_child1, ~gender_child2,
       1L"1998-11-26""2000-01-29",             1L,             2L,
       2L"1996-06-22",           NA,             2L,             NA,
       3L"2002-07-11""2004-04-05",             2L,             2L,
       4L"2004-10-10""2009-08-27",             1L,             1L,
       5L"2000-12-05""2005-02-28",             2L,             1L,
)
family <- family %>% mutate_at(vars(starts_with("dob")), parse_date)
family
## # A tibble: 5 x 5
##   family dob_child1 dob_child2 gender_child1 gender_child2
##    <int> <date>     <date>             <int>         <int>
## 1      1 1998-11-26 2000-01-29             1             2
## 2      2 1996-06-22 NA                     2            NA
## 3      3 2002-07-11 2004-04-05             2             2
## 4      4 2004-10-10 2009-08-27             1             1
## 5      5 2000-12-05 2005-02-28             2             1

在这个数据集中,每一行有2个孩子的信息,每个孩子都有性别和生日两个信息(或者两个值,value)。我们应该把chid变为一列,gender变为一列,dob变为一列。

.value参数告诉pivot_longer:列名的一部分是要用的,会变成输出数据的一个变量。

family %>% pivot_longer(
  cols = !family,
  names_to = c(".value","child"), # 列名中其他部分要用的
  names_sep = "_"# 列名中的分隔符
  values_drop_na = T
)
## # A tibble: 9 x 4
##   family child  dob        gender
##    <int> <chr>  <date>      <int>
## 1      1 child1 1998-11-26      1
## 2      1 child2 2000-01-29      2
## 3      2 child1 1996-06-22      2
## 4      3 child1 2002-07-11      2
## 5      3 child2 2004-04-05      2
## 6      4 child1 2004-10-10      1
## 7      4 child2 2009-08-27      1
## 8      5 child1 2000-12-05      2
## 9      5 child2 2005-02-28      1

在另一个anscombe数据集中也存在同样的问题:

anscombe
##    x1 x2 x3 x4    y1   y2    y3    y4
## 1  10 10 10  8  8.04 9.14  7.46  6.58
## 2   8  8  8  8  6.95 8.14  6.77  5.76
## 3  13 13 13  8  7.58 8.74 12.74  7.71
## 4   9  9  9  8  8.81 8.77  7.11  8.84
## 5  11 11 11  8  8.33 9.26  7.81  8.47
## 6  14 14 14  8  9.96 8.10  8.84  7.04
## 7   6  6  6  8  7.24 6.13  6.08  5.25
## 8   4  4  4 19  4.26 3.10  5.39 12.50
## 9  12 12 12  8 10.84 9.13  8.15  5.56
## 10  7  7  7  8  4.82 7.26  6.42  7.91
## 11  5  5  5  8  5.68 4.74  5.73  6.89

这个数据集有4对变量(x1和y1,x2和y2,x3和y3,x4和y4):

anscombe %>% 
  pivot_longer(
    cols = everything(),
    names_to = c(".value","set"), # 列名中x,y要用的
    names_pattern = "(.)(.)"
  ) %>% 
  arrange(set)
## # A tibble: 44 x 3
##    set       x     y
##    <chr> <dbl> <dbl>
##  1 1        10  8.04
##  2 1         8  6.95
##  3 1        13  7.58
##  4 1         9  8.81
##  5 1        11  8.33
##  6 1        14  9.96
##  7 1         6  7.24
##  8 1         4  4.26
##  9 1        12 10.8 
## 10 1         7  4.82
## # ... with 34 more rows

接下来再介绍一个数据集也是这样的情况,帮助大家理解:

pnl <- tibble(
  x = 1:4,
  a = c(11,00),
  b = c(0111),
  y1 = rnorm(4),
  y2 = rnorm(4),
  z1 = rep(34),
  z2 = rep(-24),
)

pnl
## # A tibble: 4 x 7
##       x     a     b      y1     y2    z1    z2
##   <int> <dbl> <dbl>   <dbl>  <dbl> <dbl> <dbl>
## 1     1     1     0 -0.0659 -0.789     3    -2
## 2     2     1     1 -1.19   -0.482     3    -2
## 3     3     0     1 -0.339   2.59      3    -2
## 4     4     0     1 -0.821   0.293     3    -2

接下来变为长数据:

pnl %>% 
  pivot_longer(
    !c(x, a, b), 
    names_to = c(".value""time"), # y和z是要用的,其他变为time
    names_pattern = "(.)(.)"
  )
## # A tibble: 8 x 6
##       x     a     b time        y     z
##   <int> <dbl> <dbl> <chr>   <dbl> <dbl>
## 1     1     1     0 1     -0.0659     3
## 2     1     1     0 2     -0.789     -2
## 3     2     1     1 1     -1.19       3
## 4     2     1     1 2     -0.482     -2
## 5     3     0     1 1     -0.339      3
## 6     3     0     1 2      2.59      -2
## 7     4     0     1 1     -0.821      3
## 8     4     0     1 2      0.293     -2

列名有重复

比如下面这个数据集,列名是有重复的:

df <- tibble(id = 1:3, y = 4:6, y = 5:7, y = 7:9, .name_repair = "minimal")
df
## # A tibble: 3 x 4
##      id     y     y     y
##   <int> <int> <int> <int>
## 1     1     4     5     7
## 2     2     5     6     8
## 3     3     6     7     9

pivot_longer处理这种数据时,会自动添加新列:

df %>% 
  pivot_longer(
    cols = !id,
    names_to = "name",
    values_to = "value"
  )
## # A tibble: 9 x 3
##      id name  value
##   <int> <chr> <int>
## 1     1 y         4
## 2     1 y         5
## 3     1 y         7
## 4     2 y         5
## 5     2 y         6
## 6     2 y         8
## 7     3 y         6
## 8     3 y         7
## 9     3 y         9

假如多个输入数据的列名会变成输出数据的一列,也是这样的情况:

df <- tibble(id = 1:3, x1 = 4:6, x2 = 5:7, y1 = 7:9, y2 = 10:12)
df
## # A tibble: 3 x 5
##      id    x1    x2    y1    y2
##   <int> <int> <int> <int> <int>
## 1     1     4     5     7    10
## 2     2     5     6     8    11
## 3     3     6     7     9    12

这个数据集也是有2对的,可以按照上面的思路写

df %>% pivot_longer(!id, names_to = ".value", names_pattern = "(.).")
## # A tibble: 6 x 3
##      id     x     y
##   <int> <int> <int>
## 1     1     4     7
## 2     1     5    10
## 3     2     5     8
## 4     2     6    11
## 5     3     6     9
## 6     3     7    12

当然也可以按照每一行有多个观测的数据集的思路写:

df %>% pivot_longer(!id, names_to = c(".value","group"), names_pattern = "(.)(.)")
## # A tibble: 6 x 4
##      id group     x     y
##   <int> <chr> <int> <int>
## 1     1 1         4     7
## 2     1 2         5    10
## 3     2 1         5     8
## 4     2 2         6    11
## 5     3 1         6     9
## 6     3 2         7    12

以上就是宽数据变长数据的常见情况,基本涵盖了日常数据,下回讲解长数据变成宽数据的例子。



以上就是今天的内容,希望对你有帮助哦!欢迎点赞、在看、关注、转发

欢迎在评论区留言或直接添加我的微信!




欢迎关注公众号:医学和生信笔记

医学和生信笔记 公众号主要分享:1.医学小知识、肛肠科小知识;2.R语言和Python相关的数据分析、可视化、机器学习等;3.生物信息学学习资料和自己的学习笔记!

往期回顾



R语言做t检验

R语言做方差分析

R语言做卡方检验

R语言做秩和检验


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存