其他
比例韦恩图
💡专注R语言在🩺生物医学中的使用
之前介绍了巨多画韦恩图和upset plot的R包,今天再介绍一个可以按照比例画不同大小圆圈韦恩图的R包:eulerr
。
安装
install.packages("eulerr")
使用
输入数据可以是一个列表,每一个元素代表一个数据集。这种方式在我看来是最简单、最好理解的。
library(eulerr)
df1 <- list(a = c(1, 2, 3, 4, 5, 6, 7),
b = c(1, 8, 5),
c = c(1, 9, 4,5),
d = c(10))
自带一个venn()
函数,可以画普通的韦恩图,默认配色还不错,默认配色来自于同一个作者的另一个R包:qualpalr
,感兴趣的可以去看看。
plot(venn(df1))
使用euler()
之后就变成了比例韦恩图,形状可选circle
或者ellipse
.
plot(euler(df1, shape = "circle"), quantities = TRUE)
可以修改填充色,边框色,标签字体颜色、大小等。
plot(euler(df1),
# 数字大小
quantities = list(cex=3),
# 填充色
fills = list(fill=c("red","blue","yellow","steelblue",
"skyblue","orange","firebrick","grey")),
# 边框
edges = list(col="purple",lty = 1:4,lwd=2),
# 标签
labels = list(col="darkgreen",cex=3)
)
输入数据还可以是一个向量,包含各个数据集元素个数以及交集个数。
plot(euler(c("a" = 3491,
"b" = 1058,
"c" = 2213,
"a&b" = 120,
"a&c" = 114,
"b&c" = 132,
"a&b&c" = 50),
),
quantities = T
)
输入数据还可以是一个逻辑值矩阵或数据框,全部用T/F
表示,每一列是一个数据集。
用fruits
数据集演示下:
# 数据集长这样
fruits
## banana apple orange sex age
## 1 FALSE FALSE FALSE female adult
## 2 FALSE FALSE FALSE male child
## 3 TRUE TRUE FALSE male adult
## 4 TRUE FALSE FALSE male adult
## 5 FALSE FALSE FALSE male adult
## 6 TRUE TRUE FALSE female adult
## 7 TRUE TRUE FALSE male child
## 8 TRUE TRUE FALSE female adult
## 9 TRUE FALSE FALSE male child
## 10 FALSE FALSE FALSE male adult
## 11 FALSE TRUE TRUE male adult
## 12 FALSE FALSE FALSE male child
## 13 TRUE TRUE TRUE female adult
## 14 FALSE FALSE TRUE female adult
## 15 TRUE TRUE TRUE male adult
## 16 FALSE FALSE FALSE male child
## 17 TRUE TRUE FALSE male child
## 18 TRUE TRUE TRUE male child
## 19 FALSE FALSE TRUE female adult
## 20 TRUE TRUE FALSE female adult
## 21 TRUE FALSE FALSE female child
## 22 FALSE FALSE FALSE male adult
## 23 TRUE TRUE FALSE male adult
## 24 FALSE FALSE FALSE female child
## 25 FALSE FALSE TRUE female child
## 26 FALSE FALSE FALSE female child
## 27 FALSE FALSE FALSE female child
## 28 FALSE FALSE FALSE female adult
## 29 TRUE TRUE FALSE male adult
## 30 FALSE FALSE FALSE female adult
## 31 FALSE FALSE FALSE female adult
## 32 TRUE TRUE FALSE male child
## 33 FALSE FALSE FALSE male child
## 34 FALSE FALSE FALSE female adult
## 35 TRUE FALSE FALSE male child
## 36 TRUE TRUE FALSE male adult
## 37 TRUE TRUE FALSE male adult
## 38 FALSE FALSE FALSE male child
## 39 TRUE FALSE FALSE female child
## 40 FALSE FALSE FALSE female adult
## 41 TRUE TRUE FALSE female child
## 42 TRUE TRUE FALSE male child
## 43 TRUE TRUE TRUE female adult
## 44 TRUE TRUE FALSE male adult
## 45 TRUE TRUE FALSE female child
## 46 TRUE TRUE FALSE male child
## 47 FALSE FALSE FALSE male child
## 48 FALSE FALSE FALSE male adult
## 49 TRUE TRUE FALSE male child
## 50 TRUE FALSE TRUE female child
## 51 FALSE FALSE FALSE male adult
## 52 TRUE TRUE TRUE male child
## 53 FALSE FALSE FALSE female child
## 54 FALSE FALSE FALSE male child
## 55 FALSE FALSE FALSE female child
## 56 FALSE FALSE FALSE male adult
## 57 FALSE FALSE FALSE female adult
## 58 TRUE TRUE FALSE male adult
## 59 TRUE TRUE FALSE female adult
## 60 FALSE FALSE TRUE male child
## 61 TRUE TRUE FALSE male child
## 62 FALSE TRUE FALSE male child
## 63 FALSE FALSE FALSE female child
## 64 FALSE FALSE FALSE male child
## 65 TRUE FALSE FALSE female child
## 66 FALSE FALSE FALSE female adult
## 67 FALSE FALSE FALSE male adult
## 68 TRUE TRUE TRUE female child
## 69 FALSE FALSE FALSE female child
## 70 TRUE TRUE FALSE male adult
## 71 FALSE FALSE FALSE male child
## 72 TRUE FALSE FALSE female adult
## 73 FALSE TRUE FALSE female adult
## 74 FALSE FALSE FALSE male child
## 75 FALSE FALSE FALSE male child
## 76 TRUE FALSE FALSE male child
## 77 TRUE TRUE FALSE male adult
## 78 FALSE FALSE FALSE female child
## 79 TRUE TRUE FALSE male child
## 80 TRUE FALSE FALSE male adult
## 81 FALSE FALSE FALSE male adult
## 82 TRUE TRUE FALSE female child
## 83 FALSE TRUE FALSE female adult
## 84 FALSE FALSE FALSE female adult
## 85 TRUE FALSE FALSE male adult
## 86 FALSE FALSE FALSE male adult
## 87 TRUE TRUE FALSE female child
## 88 FALSE FALSE FALSE female child
## 89 FALSE TRUE FALSE male adult
## 90 FALSE FALSE FALSE female child
## 91 FALSE FALSE FALSE male child
## 92 FALSE FALSE FALSE male adult
## 93 TRUE TRUE TRUE female child
## 94 TRUE FALSE FALSE female child
## 95 TRUE TRUE FALSE male child
## 96 TRUE TRUE FALSE male child
## 97 FALSE FALSE FALSE female child
## 98 FALSE TRUE FALSE male adult
## 99 TRUE TRUE FALSE male adult
## 100 TRUE TRUE TRUE male child
plot(euler(fruits[, 1:3], shape = "ellipse"), quantities = TRUE)
以上就是今天的内容~
获取更多信息,欢迎加入🐧QQ交流群:613637742
“医学和生信笔记,专注R语言在临床医学中的使用、R语言数据分析和可视化。主要分享R语言做医学统计学、meta分析、网络药理学、临床预测模型、机器学习、生物信息学等。
往期回顾
R语言机器学习R包:mlr3(合辑)
R语言和医学统计学(合辑)
使用R语言画森林图和误差线(合辑)
树状数据/层次数据可视化
手动下载的TCGA数据也是可以用TCGAbiolinks包整理的