查看原文
其他

R语言重复测量数据的多重比较

阿越就是我 医学和生信笔记 2023-06-15
关注公众号,发送R语言python,可获取资料

💡专注R语言在🩺生物医学中的使用


前面介绍了多个样本均数的多重比较,多样本非参数检验后的多重比较:

R语言多个样本均数的多重比较

R语言非参数检验后的多重比较

今天学习下重复测量数据的多重比较,本篇内容和课本结果差异较大,如有错误欢迎指出。

使用的数据来自孙振球,徐勇勇《医学统计学》第4版课本的电子版已上传到QQ群,加群即可免费获取

课本封面

重复测量方差分析

使用课本例12-1的数据,直接读取:

df12_3 <- foreign::read.spss("E:/各科资料/医学统计学/研究生课程/析因设计重复测量/9重复测量18-9研/例12-03.sav",to.data.frame = T)

str(df12_3)
## 'data.frame': 15 obs. of  7 variables:
##  $ No   : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ group: Factor w/ 3 levels "A","B","C": 1 1 1 1 1 2 2 2 2 2 ...
##  $ t0   : num  120 118 119 121 127 121 122 128 117 118 ...
##  $ t1   : num  108 109 112 112 121 120 121 129 115 114 ...
##  $ t2   : num  112 115 119 119 127 118 119 126 111 116 ...
##  $ t3   : num  120 126 124 126 133 131 129 135 123 123 ...
##  $ t4   : num  117 123 118 120 126 137 133 142 131 133 ...
##  - attr(*, "variable.labels")= Named chr [1:7] "\xd0\xf2\xba\xc5" "\xd7\xe9\xb1\xf0" "" "" ...
##   ..- attr(*, "names")= chr [1:7] "No" "group" "t0" "t1" ...

数据一共7列,第1列是患者编号,第2列是诱导方法(3种),第3-7列是5个时间点的血压。

首先转换数据格式:

library(reshape2)

df.l <- melt(df12_3, id.vars = c("No","group"), 
             variable.name = "times"
             value.name = "hp")
df.l$No <- factor(df.l$No)

str(df.l)
## 'data.frame': 75 obs. of  4 variables:
##  $ No   : Factor w/ 15 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ group: Factor w/ 3 levels "A","B","C": 1 1 1 1 1 2 2 2 2 2 ...
##  $ times: Factor w/ 5 levels "t0","t1","t2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ hp   : num  120 118 119 121 127 121 122 128 117 118 ...
head(df.l)
##   No group times  hp
## 1  1     A    t0 120
## 2  2     A    t0 118
## 3  3     A    t0 119
## 4  4     A    t0 121
## 5  5     A    t0 127
## 6  6     B    t0 121

进行重复测量方差分析,默认方法不能输出球形检验的结果,所以我更推荐rstatix提供的方法:

# 默认
f <- aov(hp ~ group*times + Error(No/times), data = df.l)
summary(f)
## 
## Error: No
##           Df Sum Sq Mean Sq F value Pr(>F)  
## group      2  912.2   456.1   5.783 0.0174 *
## Residuals 12  946.5    78.9                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Error: No:times
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## times        4 2336.5   584.1   106.6  < 2e-16 ***
## group:times  8  837.6   104.7    19.1 1.62e-12 ***
## Residuals   48  263.1     5.5                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# rstatix
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
## 
##     filter

anova_test(data = df.l,
           dv = hp,
           wid = No,
           within = times,
           between = group
           )
## ANOVA Table (type II tests)
## 
## $ANOVA
##        Effect DFn DFd       F        p p<.05   ges
## 1       group   2  12   5.783 1.70e-02     * 0.430
## 2       times   4  48 106.558 3.02e-23     * 0.659
## 3 group:times   8  48  19.101 1.62e-12     * 0.409
## 
## $`Mauchly's Test for Sphericity`
##        Effect     W     p p<.05
## 1       times 0.293 0.178      
## 2 group:times 0.293 0.178      
## 
## $`Sphericity Corrections`
##        Effect   GGe      DF[GG]    p[GG] p[GG]<.05   HFe      DF[HF]    p[HF]
## 1       times 0.679 2.71, 32.58 1.87e-16         * 0.896 3.59, 43.03 4.65e-21
## 2 group:times 0.679 5.43, 32.58 4.26e-09         * 0.896 7.17, 43.03 2.04e-11
##   p[HF]<.05
## 1         *
## 2         *

画图展示:

library(ggplot2)

df.l |> 
  group_by(times,group) |> 
  summarise(mm=mean(hp)) |> 
  ggplot(aes(times,mm))+
  geom_line(aes(group=group,color=group),size=1.2)+
  theme_bw()

接下来是重复测量数据的多重比较,课本中分成了3个方面。

组间差别多重比较

LSD/SNK/Tukey/Dunnett/Bonferroni等方法都可以,和多个均数比较的多重检验一样。

library(PMCMRplus)

summary(lsdTest(hp ~ group, data = df.l))
## 
##  Pairwise comparisons using Least Significant Difference Test
## data: hp by group
## alternative hypothesis: two.sided
## P value adjustment method: none
## H0
##            t value  Pr(>|t|)    
## B - A == 0   2.175 0.0329218   *
## C - A == 0   3.860 0.0002446 ***
## C - B == 0   1.686 0.0962097   .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

P值和课本不太一样,但是结论是一样的,A组和B组之间,A组和C组之间有差别,B组和C组之间没有差别。

时间趋势比较

重复测量方差分析可以采取正交多项式来探索时间变化趋势,具体的内涵解读可以参考冯国双老师的这篇文章:https://mp.weixin.qq.com/s/ndinwbDJsHjAelvNfwqgwA

在R里面进行正交多项式的探索略显复杂,首先定义要对时间变量(这里是times)进行正交多项式转变,我们这里有5个时间点,所以是1次方到4次方:

contrasts(df.l$times) <- contr.poly(5)
contrasts(df.l$times)
##               .L         .Q            .C         ^4
## t0 -6.324555e-01  0.5345225 -3.162278e-01  0.1195229
## t1 -3.162278e-01 -0.2672612  6.324555e-01 -0.4780914
## t2 -3.510833e-17 -0.5345225  1.755417e-16  0.7171372
## t3  3.162278e-01 -0.2672612 -6.324555e-01 -0.4780914
## t4  6.324555e-01  0.5345225  3.162278e-01  0.1195229

然后继续进行方差分析,此时是单纯探索时间对因变量的影响,所以注意formula的形式:

# A组
f1 <- aov(hp ~ times, data = df.l[df.l$group=="A",])

# 分别看不同次方的结果
summary(f1, 
        split=list(times=list(liner=1,quadratic=2,cubic=3,biquadrate=4)))
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## times                4  475.4   118.9   5.580 0.003486 ** 
##   times: liner       1   84.5    84.5   3.967 0.060229 .  
##   times: quadratic   1   26.4    26.4   1.240 0.278655    
##   times: cubic       1  364.5   364.5  17.113 0.000511 ***
##   times: biquadrate  1    0.0     0.0   0.001 0.972627    
## Residuals           20  426.0    21.3                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# B组
f2 <- aov(hp ~ times, data = df.l[df.l$group=="B",])
summary(f2, split=list(times=list(liner=1,quadratic=2,cubic=3,biquadrate=4)))
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## times                4 1017.0   254.3   9.757 0.000152 ***
##   times: liner       1  662.5   662.5  25.421 6.24e-05 ***
##   times: quadratic   1  296.2   296.2  11.367 0.003034 ** 
##   times: cubic       1    3.9     3.9   0.150 0.702229    
##   times: biquadrate  1   54.4    54.4   2.088 0.163954    
## Residuals           20  521.2    26.1                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# C组
f3 <- aov(hp ~ times, data = df.l[df.l$group=="C",])
summary(f3, split=list(times=list(liner=1,quadratic=2,cubic=3,biquadrate=4)))
## times
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## times                4 1681.6   420.4  40.915 3.28e-08 ***
##   times: liner       1  403.3   403.3  39.249 1.13e-05 ***
##   times: quadratic   1   41.7    41.7   4.054   0.0612 .  
##   times: cubic       1  605.5   605.5  58.931 9.43e-07 ***
##   times: biquadrate  1  631.1   631.1  61.425 7.23e-07 ***
## Residuals           16  164.4    10.3                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

可以看到结果和课本差异很大,关于这方面的资料较少,如果有朋友知道,欢迎指教!

时间点比较

课本说因为事后检验重复次数太多难以承受,但是我们用计算机很快,所以用事后检验也没什么问题。

事后检验可以参考组间比较,根据组别进行分组,分组比较不同时间点的差别。

事前检验课本采用配对t检验,全都和t0的数据进行比较。

事前检验使用rstatix包解决:

library(rstatix)

df.l |> 
  group_by(group) |> 
  t_test(hp ~ times, ref.group = "t0",paired = T)
## # A tibble: 12 × 11
##    group .y.   group1 group2    n1    n2 statistic    df       p   p.adj p.adj…¹
##  * <fct> <chr> <chr>  <chr>  <int> <int>     <dbl> <dbl>   <dbl>   <dbl> <chr>  
##  1 A     hp    t0     t1         5     5     8.35      4 1   e-3 4   e-3 **     
##  2 A     hp    t0     t2         5     5     1.77      4 1.52e-1 3.04e-1 ns     
##  3 A     hp    t0     t3         5     5    -3.64      4 2.2 e-2 6.6 e-2 ns     
##  4 A     hp    t0     t4         5     5     0.147     4 8.9 e-1 8.9 e-1 ns     
##  5 B     hp    t0     t1         5     5     1.72      4 1.6 e-1 1.6 e-1 ns     
##  6 B     hp    t0     t2         5     5     4.35      4 1.2 e-2 2.4 e-2 *      
##  7 B     hp    t0     t3         5     5    -8.37      4 1   e-3 3   e-3 **     
##  8 B     hp    t0     t4         5     5   -16.7       4 7.47e-5 2.99e-4 ***    
##  9 C     hp    t0     t1         5     5     1.44      4 2.23e-1 2.92e-1 ns     
## 10 C     hp    t0     t2         5     5     4.75      4 9   e-3 2.8 e-2 *      
## 11 C     hp    t0     t3         5     5    -5.12      4 7   e-3 2.8 e-2 *      
## 12 C     hp    t0     t4         5     5    -1.80      4 1.46e-1 2.92e-1 ns     
## # … with abbreviated variable name ¹p.adj.signif

直接给出3组的结果,和课本一模一样~

课本的电子版已上传到QQ群,加群即可免费获取




获取更多信息,欢迎加入🐧QQ交流群:613637742


医学和生信笔记,专注R语言在临床医学中的使用、R语言数据分析和可视化。主要分享R语言做医学统计学、meta分析、网络药理学、临床预测模型、机器学习、生物信息学等。


往期推荐



R语言和医学统计学系列(1):t检验

R语言和医学统计学系列(2):方差分析

R语言和医学统计学系列(3):卡方检验

R语言和医学统计学系列(4):秩和检验

R语言和医学统计学系列(5):多因素方差分析

R语言和医学统计学系列(6):重复测量方差分析

R语言和医学统计学系列(7):多元线性回归

R语言和医学统计学系列(8):logistic回归

R语言和医学统计学系列(9):多重检验

R语言和医学统计学系列(10):正态性和方差齐性检验

R语言和医学统计学系列(11):球形检验

R语言和医学统计学系列(12):双变量回归与相关

R语言tidy风格医学统计学

R语言tidy风格医学统计学02

R语言和医学统计学:非参数检验的补充

R语言和医学统计学(合辑)

R语言和医学统计学系列:协方差分析

R语言和医学统计学系列:样本量计算


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存