40 张图看懂分布式追踪系统原理及实践
The following article is from 码海 Author 码海
前言
在微服务架构中,一次请求往往涉及到多个模块,多个中间件,多台机器的相互协作才能完成。这一系列调用请求中,有些是串行的,有些是并行的,那么如何确定这个请求背后调用了哪些应用,哪些模块,哪些节点及调用的先后顺序?如何定位每个模块的性能问题?本文将为你揭晓答案。
本文将会从以下几个方面来阐述
分布式追踪系统原理及作用 SkyWalking的原理及架构设计 我司在分布式调用链上的实践
分布式追踪系统的原理及作用
如何衡量一个接口的性能好坏,一般我们至少会关注以下三个指标
接口的 RT 你怎么知道? 是否有异常响应? 主要慢在哪里?
单体架构
在初期,公司刚起步的时候,可能多会采用如下单体架构,对于单体架构我们该用什么方式来计算以上三个指标呢?
最容易想到的显然是用 AOP
微服务架构
在单体架构中由于所有的服务,组件都在一台机器上,所以相对来说这些监控指标比较容易实现,不过随着业务的快速发展,单体架构必然会朝微服务架构发展,如下
如果有用户反馈某个页面很慢,我们知道这个页面的请求调用链是 A -----> C -----> B -----> D,此时如何定位可能是哪个模块引起的问题。每个服务 Service A,B,C,D 都有好几台机器。怎么知道某个请求调用了服务的具体哪台机器呢?
排查问题难度大,周期长 特定场景难复现 系统性能瓶颈分析较难
分布式调用链就是为了解决以上几个问题而生,它主要的作用如下
自动采取数据 分析数据产生完整调用链:有了请求的完整调用链,问题有很大概率可复现 数据可视化:每个组件的性能可视化,能帮助我们很好地定位系统的瓶颈,及时找出问题所在
通过分布式追踪系统能很好地定位如下请求的每条具体请求链路,从而轻易地实现请求链路追踪,每个模块的性能瓶颈定位与分析。
分布式调用链标准 - OpenTracing
知道了分布式调用链的作用,那我们来看下如何实现分布式调用链的实现及原理, 首先为了解决不同的分布式追踪系统 API 不兼容的问题,诞生了 OpenTracing 规范,OpenTracing 是一个轻量级的标准化层,它位于应用程序/类库和追踪或日志分析程序之间。
说到这大家是否想过 Java 中类似的实现?还记得 JDBC 吧,通过提供一套标准的接口让各个厂商去实现,程序员即可面对接口编程,不用关心具体的实现。这里的接口其实就是标准,所以制定一套标准非常重要,可以实现组件的可插拔。
接下来我们来看 OpenTracing 的数据模型,主要有以下三个
Trace:一个完整请求链路 Span:一次调用过程(需要有开始时间和结束时间) SpanContext:Trace 的全局上下文信息, 如里面有traceId
理解这三个概念非常重要,为了让大家更好地理解这三个概念,我特意画了一张图
如图示,一次下单的完整请求完整就是一个 Trace, 显然对于这个请求来说,必须要有一个全局标识来标识这一个请求,每一次调用就称为一个 Span,每一次调用都要带上全局的 TraceId, 这样才可把全局 TraceId 与每个调用关联起来,这个 TraceId 就是通过 SpanContext 传输的,既然要传输显然都要遵循协议来调用。如图示,我们把传输协议比作车,把 SpanContext 比作货,把 Span 比作路应该会更好理解一些。
理解了这三个概念,接下来我看看分布式追踪系统如何采集统一图中的微服务调用链
我们可以看到底层有一个 Collector 一直在默默无闻地收集数据,那么每一次调用 Collector 会收集哪些信息呢。
全局 trace_id:这是显然的,这样才能把每一个子调用与最初的请求关联起来 span_id: 图中的 0,1,1.1,2,这样就能标识是哪一个调用 parent_span_id:比如 b 调用 d 的 span_id 是 1.1,那么它的 parent_span_id 即为 a 调用 b 的 span_id 即 1,这样才能把两个紧邻的调用关联起来。
有了这些信息,Collector 收集的每次调用的信息如下
根据这些图表信息显然可以据此来画出调用链的可视化视图如下
于是一个完整的分布式追踪系统就实现了。
以上实现看起来确实简单,但有以下几个问题需要我们仔细思考一下
怎么自动采集 span 数据:自动采集,对业务代码无侵入 如何跨进程传递 context traceId 如何保证全局唯一 请求量这么多采集会不会影响性能
接下我来看看 SkyWalking 是如何解决以上四个问题的
SkyWalking的原理及架构设计
怎么自动采集 span 数据
SkyWalking 采用了插件化 + javaagent 的形式来实现了 span 数据的自动采集,这样可以做到对代码的 无侵入性,插件化意味着可插拔,扩展性好(后文会介绍如何定义自己的插件)
如何跨进程传递 context
我们知道数据一般分为 header 和 body, 就像 http 有 header 和 body, RocketMQ 也有 MessageHeader,Message Body, body 一般放着业务数据,所以不宜在 body 中传递 context,应该在 header 中传递 context,如图示
traceId 如何保证全局唯一
要保证全局唯一 ,我们可以采用分布式或者本地生成的 ID,使用分布式话需要有一个发号器,每次请求都要先请求一下发号器,会有一次网络调用的开销,所以 SkyWalking 最终采用了本地生成 ID 的方式,它采用了大名鼎鼎的 snowflow 算法,性能很高。
图示: snowflake 算法生成的 id
不过 snowflake 算法有一个众所周知的问题:时间回拨,这个问题可能会导致生成的 id 重复。那么 SkyWalking 是如何解决时间回拨问题的呢。
这里要说一下系统设计上的方案取舍问题了,首先如果针对产生的这个随机数作唯一性校验无疑会多一层调用,会有一定的性能损耗,但其实时间回拨发生的概率很小(发生之后由于机器时间紊乱,业务会受到很大影响,所以机器时间的调整必然要慎之又慎),再加上生成的随机数重合的概率也很小,综合考虑这里确实没有必要再加一层全局惟一性校验。对于技术方案的选型,一定要避免过度设计,过犹不及。
请求量这么多,全部采集会不会影响性能?
如果对每个请求调用都采集,那毫无疑问数据量会非常大,但反过来想一下,是否真的有必要对每个请求都采集呢,其实没有必要,我们可以设置采样频率,只采样部分数据,SkyWalking 默认设置了 3 秒采样 3 次,其余请求不采样,如图示
它是这样解决的:如果上游有携带 Context 过来(说明上游采样了),则下游强制采集数据。这样可以保证链路完整。
SkyWalking 的基础架构
SkyWalking 的基础如下架构,可以说几乎所有的的分布式调用都是由以下几个组件组成的
SkyWalking 的性能如何
接下来大家肯定比较关心 SkyWalking 的性能,那我们来看下官方的测评数据
图中蓝色代表未使用 SkyWalking 的表现,橙色代表使用了 SkyWalking 的表现,以上是在 TPS 为 5000 的情况下测出的数据,可以看出,不论是 CPU,内存,还是响应时间,使用 SkyWalking 带来的性能损耗几乎可以忽略不计。
接下来我们再来看 SkyWalking 与另一款业界比较知名的分布式追踪工具 Zipkin, Pinpoint 的对比(在采样率为 1 秒 1 个,线程数 500,请求总数为 5000 的情况下做的对比),可以看到在关键的响应时间上, Zipkin(117ms),PinPoint(201ms)远逊色于 SkyWalking(22ms)!
从性能损耗这个指标上看,SkyWalking 完胜!
再看下另一个指标:对代码的侵入性如何,ZipKin 是需要在应用程序中埋点的,对代码的侵入强,而 SkyWalking 采用 javaagent + 插件化这种修改字节码的方式可以做到对代码无任何侵入,除了性能和对代码的侵入性上 SkyWaking 表现不错外,它还有以下优势几个优势
对多语言的支持,组件丰富:目前其支持 Java, .Net Core, PHP, NodeJS, Golang, LUA 语言,组件上也支持dubbo, mysql 等常见组件,大部分能满足我们的需求。
扩展性:对于不满足的插件,我们按照 SkyWalking 的规则手动写一个即可,新实现的插件对代码无入侵。
我司在分布式调用链上的实践
SkyWalking 在我司的应用架构
由上文可知 SkyWalking 有很多优点,那么是不是我们用了它的全部组件了呢,其实不然,来看下其在我司的应用架构
从图中可以看出我们只采用了 SkyWalking 的 agent 来进行采样,放弃了另外的「数据上报及分析」,「数据存储」,「数据可视化」三大组件,那为啥不直接采用 SkyWalking 的整套解决方案呢,因为在接入 SkyWalking 之前我们的 Marvin 监控生态体系已经相对比较完善了,如果把其整个替换成 SkyWalking,一来没有必要,Marvin 在大多数场景下都能满足我们的需求,二来系统替换成本高,三来如果重新接入用户学习成本很高。
这也给我们一个启示:任何产品抢占先机很重要,后续产品的替换成本会很高,抢占先机,也就是抢占了用户的心智,这就像微信虽然 UI,功能上制作精良,但在国外照样干不过 Whatsapp 一样,因为先机已经没了。
从另一方面来看,对架构来说,没有最好的,最有最合适的,结合当前业务场景去平衡折中才是架构设计的本质
我司对 SkyWalking 作了哪些改造和实践
我司主要作了以下改造和实践
预发环境由于调试需要强制采样 实现更细粒度的采样? 日志中嵌入traceId 自研实现了 SkyWalking 插件
预发环境由于调试需要强制采样
从上文分析可知 Collector 是在后台定时采样的,这不挺好的吗,为啥要实现强制采样呢。还是为了排查定位问题,有时线上出现问题,我们希望在预发上能重现,希望能看到这个请求的完整调用链,所以在预发上实现强制采样很有必要。所以我们对 Skywalking 的 dubbo 插件进行了改造,实现强制采样
我们在请求的 Cookie 上带上一个类似 force_flag = true 这样的键值对来表示我们希望强制采样,在网关收到这个 Cookie 后,就会在 dubbo 的 attachment 里带上force_flag = true 这个键值对,然后 skywalking 的 dubbo 插件就可以据此来判断是否是强制采样了,如果有这个值即强制采样,如果没有这个值,则走正常的定时采样。
实现更细粒度的采样?
哈叫更细粒度的采样。先来看下 skywalking 默认的采样方式 ,即统一采样
日志中如何嵌入traceId?
输出日志中嵌入 traceId 便于我们排查问题,所以打出出 traceId 非常有必要,该怎么在日志中嵌入 traceId 呢?我们用的是 log4j,这里就要了解一下 log4j 的插件机制了,log4j 允许我们自定义插件来输出日志的格式,首先我们需要定义日志的格式,在自定义的日志格式中嵌入 %traceId, 作为占位符,如下
然后我们再实现一个 log4j 的插件,如下
我司自研了哪些 skywalking 插件
SkyWalking 实现了很多插件,不过未提供 memcached 和 druid 的插件,所以我们根据其规范自研了这两者的插件
插件如何实现呢,可以看到它主要由三个部分组成
插件定义类: 指定插件的定义类,最终会根据这里的定义类打包生成 plugin Instrumentation: 指定切面,切点,要对哪个类的哪个方法进行增强 Interceptor,指定步骤 2 中要在方法的前置,后置还是异常中写增强逻辑
可能大家看了还是不懂,那我们以 dubbo plugin 来简单讲解一下,我们知道在 dubbo 服务中,每个请求从 netty 接收到消息,递交给业务线程池处理开始,到真正调用到业务方法结束,中间经过了十几个 Filter 的处理
所以显然我们需要在插件中指定我们要增强的类(MonitorFilter),对其方法(invoke)做增强,要对这个方法做哪些增强呢,这就是拦截器(Inteceptor)要做的事,来看看 Dubbo 插件中的 instrumentation(DubboInstrumentation)
我们再看看下代码中描写的拦截器(Inteceptor)干了什么事,以下列出关键步骤
首先 beforeMethod 代表在执行 MonitorFilter 的 invoke 方法前会调用这里的方法,与之对应的是 afterMethod,代表在执行 invoke 方法后作增强逻辑。
其次我们从第 2,3点可以看到,不管是 consumer 还是 provider, 都对其全局 ID 作了相应处理,这样确保到达真正的业务层的时候保证有了此全局 traceid,定义好 Instrumentation 和 Interceptor 后,最后一步就是在 skywalking.def 里指定定义的类
// skywalking-plugin.def 文件
dubbo=org.apache.skywalking.apm.plugin.asf.dubbo.DubboInstrumentation
这样打包出来的插件就会对 MonitorFilter 的 invoke 方法进行增强,在 invoke 方法执行前对期 attachment 作注入全局 traceId 等操作,这一切都是静默的,对代码无侵入的。
总结
本文由浅入深地介绍了分布式追踪系统的原理,相信大家对其作用及工作机制有了比较深的理解,特别需要注意的是,引入某项技巧,一定要结合现有的技术架构作出最合理的选择,就像 SkyWalking 有四个模块,我司只采用其 agent 采样功能一样,没有最好的技术,只有最合适的技术,通过此文,相信大家应该对 SkyWalking 的实现机制有了比较清晰的认识,文中只是介绍了一下 SkyWalking 的插件实现方式,不过其毕竟是工业级软件,要了解其博大精深,还要多读源码哦。