查看原文
其他

【直播】王中林院士:双相接触起电中的电子转移与电子跃进

蔻享学术 2023-05-04

以下文章来源于eScience期刊 ,作者eScience编辑部




直播信息

报告题目

双相接触起电中的电子转移与电子跃进

报告人

王中林 院士

中国科学院北京纳米能源与系统研究所

中科院大学纳米学院

佐治亚理工学院

eScience顾问编委

报告时间

2022年6月18日 (周六) 10:00

组织机构

主办方:

南开大学eScience编辑部

协办方:

南开大学新能源转化与存储交叉科学中心

先进能源材料化学教育部重点实验室

天津市新能源电池人才创新创业联盟

直播二维码


eScience高峰论坛-卓越讲座将于6月18日上午10:00-11:30 线上举办,特邀嘉宾为中国科学院北京纳米能源与系统研究所所长,中科院大学纳米学院院长、讲席教授,佐治亚理工学院终身校董事讲席教授,中国科学院外籍院士王中林教授。王中林院士是eScience顾问编委。eScience系列高峰论坛聚焦新能源高效转化与高密存储,探讨能源领域世界科技前沿进展,服务“碳达峰、碳中和”国家战略需求。

报告人简介


王中林院士是2019年爱因斯坦世界科学奖(Albert Einstein World Award of Science)、2018年埃尼奖(ENI Award-The "Nobel Prize" for Energy)、2015年汤森路透引文桂冠奖、2014年美国物理学会James C. McGroddy新材料奖和2011年美国材料学会奖章(MRS Medal)等国际大奖得主。他是中科院外籍院士、欧洲科学院院士、加拿大工程院外籍院士,国际纳米能源领域著名刊物Nano Energy(最新IF:17.88)的创刊主编和现任主编。王院士是纳米能源研究领域的奠基人。他发展了基于纳米能源的高熵能源与新时代能源体系;开创了基于纳米发电机的自驱动系统及蓝色能源宏大领域,与基于压电电子学与压电光电子学效应的第三代半导体的崭新领域;建立了压电电子学、压电光电子学与摩擦电子学学科;发现了六个新物理效应:压电电子学效应、压电光电子学效应、压电光子学效应、摩擦伏特效应、热释光电子效应和交流光伏效应。王中林院士在所有领域世界前10万科学家终身科学影响力排第三,2019年和2020年度科学影响力排第一;材料科学世界排名第一;工程与技术世界排名第四,纳米技术排名第一。王院士有上百个美国和国际专刊,并孵化了五家企业。

报告摘要

Although contact electrification (triboelecrification) (CE) has been documented since 2600 years ago, its scientific understanding remains inconclusive, unclear and un-unified. This paper reviews the updated progress for studying the fundamental mechanism of CE using Kelvin probe force microscopy for solid-solid cases. Our conclusion is that electron transfer is the dominant mechanism for CE between solid-solid pairs. Electron transfer occurs only when the interatomic distance between the two materials is shorter than the normal bonding length (typically ~0.2 nm) in the region of repulsive forces. A strong electron cloud overlap (or wave function overlap) between the two atoms/molecules in the repulsive region leads to electron transition between the atoms/molecules, owing to the reduced interatomic potential barrier. The role played by contact/friction force is to induce strong overlap between the electron clouds (or wave function in physics, bonding in chemistry). The electrostatic charges on the surfaces can be released from the surface by electron thermionic emission and/or photon excitation, so these electrostatic charges may not remain on the surface if sample temperature is higher than ~300-400 ℃.
The electron transfer model could be extended to liquid-solid, liquid-gas and even liquid-liquid cases. As for the liquid-solid case, molecules in the liquid would have electron cloud overlap with the atoms on the solid surface at the very first contact with a virginal solid surface, and electron transfer is required in order to create the first layer of electrostatic charges on the solid surface. This step only occurs for the very first contact of the liquid with the solid. Then, ion transfer is the second step and is the dominant process thereafter, which is a redistribution of the ions in solution considering electrostatic interactions with the charged solid surface. This is proposed as a two-step formation process of the electric double layer (EDL) at the liquid-solid interface.

扩展阅读

 

1.【IJSNM杰出讲座系列】中科院纳米能源所王中林院士:基于纳米发电机的高熵能源体系的理论、技术与应用

2.【中科院北京纳米能源所】王中林院士:摩擦纳米发电机中的基础科学及理论

3.【北大彤程材料科学论坛】 从微纳小能源到蓝色大能源-纳米发电机从“0-1”的发明与发展

4.【高能论坛 】王中林院士:从物联网时代的高熵能源到迈向碳中和的蓝色大能源

5. John Rogers院士、王中林院士与你相约AMT创刊5周年在线研讨会!

编辑:黄琦

蔻享学术平台,国内领先的一站式科学资源共享平台,依托国内外一流科研院所、高等院校和企业的科研力量,聚焦前沿科学,以优化科研创新环境、传播和服务科学、促进学科交叉融合为宗旨,打造优质学术资源的共享数据平台。



版权说明:未经授权严禁任何形式的媒体转载和摘编,并且严禁转载至微信以外的平台!


原创文章首发于蔻享学术,仅代表作者观点,不代表蔻享学术立场。

转载请在『蔻享学术』公众号后台留言。


点击阅读原文~发现惊喜!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存