查看原文
其他

协会聚焦 | 什么是隐私计算?它有什么作用?

协会君 天津市大数据协会 2022-09-24



多方安全计算在20世纪80年代初提出的时候,还只是作为一种亟待可行性验证的技术理论,而后计算机算力不断提高,移动互联网、云计算和大数据等技术快速发展,催生了众多新的服务模式和应用。


隐私计算是指在保护数据本身不对外泄露的前提下实现数据分析计算的一类信息技术,包含了数据科学、密码学、人工智能等众多技术体系的交叉融合。在隐私计算框架下,参与方的数据明文不出本地,在保护数据安全的同时,实现多方数据协同应用和联合计算,解决了又要用数据又要保护数据的矛盾。

 


PART1观点一数据产权分置,隐私计算迎来发展机遇

作为平衡数据流通与安全的重要工具,近几年,工业和信息化部、人民银行、国家发改委、中央网信办等部门政策文件中均提到要推进隐私计算相关技术的研究攻关和部署应用,使得技术的关注度日渐提升;近期,随着中央全面深化改革委员会第二十六次会议上审议通过了《关于构建数据基础制度更好发挥数据要素作用的意见》,建立数据资源持有权、数据加工使用权、数据产品经营权等分置的产权运行机制、建立合规高效的数据要素流通和交易制度等举措,为实现原始数据不出域、数据可用不可见的隐私计算提供了更加明确的落地指引。

PART2观点二技术体系扩展,隐私计算概念外延深化

随着隐私保护的需求越来越重视,隐私计算也称隐私增强计算、隐私保护计算,其范畴逐渐扩大。例如,今年美国发布的法案中定义其为减轻数据处理所产生的个人隐私风险的任何软硬件技术。因此,我们认为广义的隐私计算是涵盖隐私信息全生命周期过程的所有计算操作,包括任何实现隐私保护前提下数据安全流通共享的技术。除多方安全计算、联邦学习、可信执行环境这传统三大方法外,还包括数据限制发布的技术、数据失真的技术和一些辅助技术。未来,可能还会随着技术的发展,将包括一些新的技术内容,技术外延将进一步扩展。



PART3观点三技术路线融合,优势互补突破应用瓶颈

隐私计算的三大主流路线各自有着其独特的优势与不足,这些不足阻碍了隐私计算的落地应用。

a.  基于多方安全计算(MPC)的隐私计算具有较高的安全性,能够做到可证明安全,但是因为协议本身需要大量的额外通信与计算,导致其计算效率差,高安全假设的方案难以在现实场景中被使用;

b.  基于联邦学习(FL)的隐私计算针对多方联合机器学习有着较好的适配性,相比MPC方式,其能够在更为合理的性能范围之内完成联合机器学习任务。然而,联邦学习的安全性参差不齐,安全基准设置困难,安全性较难评估,加重了用户对联邦学习的安全困扰;

c.  基于可信执行环境(TEE)的隐私计算结合了密码技术与可信硬件,能够在不过多损失性能的前提下,通过可信认证、一致性核验、密文传输、计算隔绝等一系列手段保护来保护数据隐私。但是,基于TEE的方式多需要将数据集中处理,若攻击者通过如侧信道攻击等方式破环了可信硬件的安全性,可能会导致明文数据泄露。

PART4观点四支撑产品落地,技术可用性有一定提升

隐私计算已经从去年的场景验证阶段迈入今年的场景落地应用阶段,除了安全性,隐私计算的可用性也受到各方的极大关注。可用性是应用场景能够规模落地的主要抓手。可用性主要包括计算性能、系统稳定性、产品易用性和场景支持能力。



性能方面,通过算法优化、并行计算或加速卡、一体机来加速计算效率。当下,性能已经可以支持亿级数据的计算,高并发XGB算法建模效率相比之前可提高至少50%;此外,市面上已经不少家厂商推出了一体机产品,计算效率可提升数十到数百位。

稳定性方面,主备、多活和自动容灾恢复的能力在产品应用中也有显现,比如本批次测试中MPC产品稳定性用例的通过比率已由去年的10%提高到40%。


总结

隐私计算市场仍处于大规模商业应用前期,有很多挑战待克服,但随着技术不断成熟和市场认知的提高,隐私计算将持续为政府、金融、公共服务、工业互联网等高价值场景提供可信数据基础,为数字经济形态的向好发展提供稳健助力。



精彩回顾


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存