其他
ggplot2再话箱线图之几何填充
❝VIP群里有观众老爷询问如何对箱线图进行几何形状填充,那么今天就来具体介绍一番;在原有的基础上做了一些小的改动也许恰好您正好有此特殊需求,需要着重体会八个字「变实为虚,变虚为实」,希望对各位观众老爷有所帮助;下面来看具体案例;
❞
❝❞
有需要的观众老爷欢迎加入小编的VIP群
,目前已经上传「2021-2022两年公众号文档数据+代码约180篇左右」包含付费文档,扫描文末尾二维码加小编微信「付费99元」后邀请进群,「由于群名额有限人满之后将不在添加新成员」,有需要的请尽早加入,早进早享受;「一定让你感受到物超所值」,加入小编的VIP如果你有一些让我感兴趣的图表提供示例数据小编若有时间会写成推文发送
加载R包
library(tidyverse)
library(ggsci)
library(ggprism)
library(rstatix)
library(ggpubr)
library(ggpmisc)
library(ggpattern)
加载数据
gapminder <- read_tsv("gapminder.xls")
数据清洗
df <- gapminder %>%
filter(year %in% c(1957,2002,2007),continent !="Oceania") %>%
select(country,year,lifeExp,continent)%>%
mutate(paired = rep(1:(n()/3),each=3),year=factor(year))
统计分析
df_p_val1 <- df %>% group_by(continent) %>%
wilcox_test(lifeExp ~ year) %>%
adjust_pvalue(p.col = "p", method = "bonferroni") %>%
add_significance(p.col = "p.adj") %>%
add_xy_position(x = "year", dodge = 0.8)
构建填充类型
❝下面函数来自「ggpattern」包官方文档
❞
https://coolbutuseless.github.io/package/ggpattern/articles/developing-patterns.html
tiling3_pattern <- function(params, boundary_df, aspect_ratio, legend = FALSE) {
args <- as.list(params)
args <- args[grep("^pattern_", names(args))]
# hexagonal tiling using "regular_polygon" pattern
args$pattern <- "polygon_tiling"
# three-color tiling using `fill`, `pattern_fill` and their "average"
avg_col <- gridpattern::mean_col(params$fill, params$pattern_fill)
args$pattern_fill <- c(params$fill, avg_col, args$pattern_fill)
args$x <- boundary_df$x
args$y <- boundary_df$y
args$id <- boundary_df$id
args$prefix <- ""
do.call(gridpattern::patternGrob, args)
}
options(ggpattern_geometry_funcs = list(tiling3 = tiling3_pattern))
数据可视化
df %>%
ggplot(aes(year,lifeExp)) +
stat_boxplot(aes(ymin = ..lower.., ymax = ..upper..),outlier.shape = NA,width=0.5) +
stat_boxplot(geom = "errorbar", aes(ymin = ..ymax..),width=0.2,size=0.35) +
stat_boxplot(geom = "errorbar", aes(ymax = ..ymin..),width=0.2,size=0.35) +
geom_boxplot_pattern(aes(pattern = year,pattern_angle = year,fill=year),
pattern = 'tiling3', pattern_angle = 45,color="black",
pattern_spacing = 0.045,outlier.shape = NA,linetype = "dashed",width=0.5,size=0.35)+
stat_summary(geom = "crossbar", fun = "median",width = 0.5,color="black",size=0.38)+
stat_pvalue_manual(df_p_val1,label = "p.adj.signif",label.size=5,hide.ns = F)+
scale_size_continuous(range=c(1,3))+
# geom_smooth(method = "lm", formula = NULL,size=1,se=T,color="black",linetype="dashed",aes(group=1))+
stat_cor(label.y = 25,aes(label = paste(..rr.label.., ..p.label.., sep = "~`,`~"),group=1),color="black",
label.x.npc = "left")+
stat_regline_equation(label.y = 19,aes(group=1),color="black")+
facet_wrap(.~continent,nrow=1)+
scale_fill_npg()+
scale_x_discrete(guide = "prism_bracket")+
scale_y_continuous(limits = c(0,95),minor_breaks = seq(0,95,5),guide = "prism_offset_minor")+
labs(x=NULL,y=NULL)+
theme_prism(base_line_size =0.4)+
theme(plot.margin=unit(c(0.5,0.5,0.5,0.5),units=,"cm"),
strip.text = element_text(size=12),
axis.line = element_line(color = "black",size = 0.4),
panel.grid.minor = element_blank(),
panel.grid.major = element_line(size = 0.2,color = "#e5e5e5"),
axis.text.y = element_text(color="black",size=10),
axis.text.x = element_text(margin = margin(t = -5),color="black",size=10),
legend.position = "none",
panel.spacing = unit(0,"lines"))+
coord_cartesian()
数据获取
❝还是熟悉的配方,除了构建三色形状填充外,需要体会的依然是「变实为虚,变虚为实」绘图思维尽在其中,那么本节介绍到此结束;
❞喜欢的观众老爷欢迎分享转发
;「有需要加群的欢迎加入我的VIP交流群,99元也许能解决就你的很多问题」,「加小编微信请备注信息及来意,其它请勿扰」
小编微信
关注下方公众号下回更新不迷路
往期推荐