在治理目标上,强调发展和安全的协调统一。一方面要求有效管控核心风险,加强人工智能可信赖和伦理治理水平,避免生成式人工智能对国家安全、产业秩序和社会稳定带来负面影响;另一方面要意识到不发展是最大的不安全,通过技术进步带动产业高质量发展、提高生产效率,保障我国科技发展话语权。
在治理方式上,突出以风险为基础的治理机制。生成式人工智能对个人信息、内容安全、模型安全和知识产权等方面带来诸多挑战,以风险为基础的治理要求对各环节的风险点进行识别和判断,根据风险特征、危害性和影响范围进行分类分级,对于处在不同研发阶段、针对不同应用场景、面向不同数量用户的生成式人工智能服务有差异化的风险管理要求。
在治理手段上,采用包容、敏捷的新型治理工具。生成式人工智能处在快速发展阶段,其技术路线还在动态演进,产业和社会应用前景尚不明晰,监管和产业需要共同面对诸多不确定性问题,采用监管沙箱、尽职免责等创新容错手段,推动积极沟通、敏捷协作,共同寻找提高安全性、可控性和可靠性的解决方案;同时通过宣传教育,提高公众对于生成式人工智能的认知水平,建立基于信任的人机协作社会生态。
生成式AI相对于算法推荐服务对个性化要求不高,可主动采用技术手段从源头减少个人信息收集、降低个人信息在训练数据中的比例和真实性;对于输出的合成内容,算法服务可拒绝生成个人信息内容;可采用数据匿名化机制,在保护个人信息的同时,激发更多数据价值。
从内容安全角度看,AIGC相比UGC在主体责任、交互性、时效性、内容复杂度、风险范围等多个维度都有较大差异,因此在风险评测定位、模型内生安全、应用安全机制、生成内容追溯机制等方面全面设置针对性的治理机制。
在模型安全层面,生成式人工智能模型因其输出空间的自由度更高、网络结构复杂、模型参数和训练数据规模巨大等特点,在鲁棒性、可靠性、公平性、可用性、可解释性等方面都带来了新的风险挑战,应相应地提升治理技术能力,提出针对性治理解决方案。
生成式人工智能的知识产权问题,目前仍在热议中,尚未形成统一看法。知识产权问题不宜片面化,既要保护作为训练数据的现有人类智力成果,也需注意创新公平和创造力延续。现阶段宜鼓励平衡相关利益主体的治理方案,既要从源头进行训练数据相关权利人的保护,规避非法爬取,利用水印、区块链等技术,建立生成式人工智能相关知识产权溯源补偿机制;又要挖掘缓存价值,在一定范围上承认生成物的知识产权价值。
在数据层面,强化数据清洗、预处理、合规审查等标准化技术手段,促进高质量中文数据集发展;增加高质量、事实性知识库或者知识图谱,通过检索式增强、知识计算等技术解决大模型“一本正经地胡说八道”等问题,提高生成式人工智能的可信度。
在模型层面,研究探索大模型的可解释性问题,包括对世界知识的记忆和存储原理,以及预测阶段的知识提取过程;构建大模型参数修正技术,探索大模型的知识遗忘和知识修改技术,从而针对定向问题进行模型修正;探索更高效的RLHF技术,具备更好的泛化性,提升模型和人类知识与价值观的对齐,研发可信赖的生成式人工智能。
在应用层面,建立大模型应用系统的风险Debug系统,风险修复系统,做到风险提前发现,提前修复;建立应用系统的数据闭环,对风险数据不断进行RLHF对齐,不断提升应用系统的安全性。