研究团队发现了一个具有广谱中和活性的新冠纳米双抗,其中一端的抗体n3130v靶向的就是位于三聚体内部高度保守的隐藏表位,其可高效中和所有突变株。对RBD上已出现过的所有突变位点进行统计分析,发现该表位均未发生高频突变,揭示了相较于免疫原性更强的受体结合区(RBM),隐藏表位因更少遭受免疫攻击的压力而更少发生抗原漂移。广谱中和单抗S2H97的结合位点与n3130v高度重合,其不仅能中和新冠病毒,在β属冠状病毒中也显示出广谱中和活性,说明该表位在冠状病毒进化过程中十分保守。有意思的是,针对这个表位的抗体通过进入三聚体内部,与RBD的内表面结合,引起RBD过度打开,从而造成三聚体结构的不稳定,甚至使S1蛋白提前脱离,导致病毒失去入侵能力。总的来说,位于三聚体内部的隐藏表位在流感病毒、冠状病毒中均高度保守,有望作为广谱中和抗体和疫苗开发的靶点,从而应对病毒突变导致的免疫逃逸。参考文献:Bangaru, S., et al. (2019), 'A
Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer
Interface', Cell, 177 (5), 1136-52.e18.Cao, Y., et al. (2022),
'Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies',
Nature, 602 (7898), 657-63.Li, Cheng, et al. 'Broad
neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain
antibody', Cell. https://doi.org/10.1016/j.cell.2022.03.009Starr, T. N., et al. (2020),
'Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints
on Folding and ACE2 Binding', Cell, 182 (5), 1295-310.e20.Starr, T. N., et al. (2021),
'SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape',
Nature, 597 (7874), 97-102.Tian, X., et al. (2020),
'Potent binding of 2019 novel coronavirus spike protein by a SARS
coronavirus-specific human monoclonal antibody', Emerg Microbes Infect, 9 (1),
382-85.Watanabe, A., et al. (2019),
'Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG
Subtype-Dependent Mechanism', Cell, 177 (5), 1124-35.e16.Yu, F., et al. (2017), 'A
Potent Germline-like Human Monoclonal Antibody Targets a pH-Sensitive Epitope
on H7N9 Influenza Hemagglutinin', Cell Host Microbe, 22 (4), 471-83.e5.Yuan, M., et al. (2020), 'A
highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2
and SARS-CoV', Science, 368 (6491), 630-33.