Zymeworks:占据半壁江山的ADC平台梳理
图1. ADC通过不同途径杀伤癌细胞的机制概述
抗体偶联药物(Antibody-drug conjugates, ADC)是一类针对癌症的生物治疗药物,它结合了单克隆抗体(mAb)的靶向能力和细胞毒性药物(Payload,有效载荷)的抗癌能力。抗体和有效载荷通过连接子(Linker)进行连接,允许将特定药物递送至抗体靶向的癌细胞。ADC进入细胞后,连接的有效载荷被释放并杀死细胞(图1)[1]。虽然ADC旨在靶向并杀死肿瘤细胞,同时不伤害健康细胞,但第一代ADC平台存在一些局限性,导致ADC的治疗窗狭窄且对患者具有不可接受的毒性。
针对上述问题,本专题系列将总结归纳国内外知名企业应用的ADC技术平台。
前几期主要介绍了Synaffix、Mersana、Thiologics、Concortis、MediLink、KELUN、DualityBio和荣昌生物及宜联/映恩/科伦博泰的ADC技术平台,今天将继续介绍一些公司的ADC技术:
作者:知乎_西山含黛
Making a Meaningful Difference
Zymeworks Inc.是位于温哥华的上市生物技术公司,成立于2003年,将蛋白质工程和药物化学领域行业领先的专业知识整合到其自身专有的多特异性抗体和ADC治疗模式中,并与疾病生物学相结合,开发主要用于治疗癌症以及自身免疫性疾病和炎症性疾病的新一代抗体疗法。经过20年的不断发展,目前该公司已拥有四项专利技术平台:Azymetric™[2],ZymeLink™[3],EFECT™[4]和ProTECT™[5] (图1);此外,原有的AlbuCORE[6]技术平台已在该公司官网上消失,未在相关项目中应用。
图1. Zymeworks技术平台简介[7]
Zymeworks根据自身或合作伙伴的需求,将四大技术平台融合使用,设计新型多功能抗体疗法,开发不同功能的ADC和多特异性抗体。在四大技术平台中,Azymetric™和ProTECT™ (PROgrammed Tumor Engagement & Checkpoint/Co‑stimulation Targeting)技术主要用于多特异性抗体的构建,Azymetric™技术已得到临床验证[8, 9];EFECT™ (Effector Function Enhancement and Control Technology)技术主要对抗体Fc进行工程化改造(氨基酸突变),对免疫细胞的功能进行调节。
图2. Zymeworks研发管线与其涉及的肿瘤免疫机制
ZymeLink™技术是Zymeworks的ADC技术平台,拥有专利授权的细胞毒性药物和Linker (可切割/不可切割)两大类,致力于开发高度差异化的ADC疗法。ZymeLink™平台可与多特异性抗体平台Azymetric™相结合,开发具有更高疗效的下一代ADC型双特异抗体(图2)[10, 11]。ZymeLink™技术平台[12]应用主要涵盖五大方面:ZymeLink™ Auristatin,TOPO1i ADC平台,ZymeLink™ Hemiasterlin,Cysteine-Insertion Conjugation (位点特异性偶联)和TLR7 ISAC (图3)。
图3. ZymeLink™技术平台
01
02
TOPO1i ADC技术平台
03
ZymeLink™ Hemiasterlin技术平台
04
05
Cysteine-Insertion Conjugation技术平台
1. Fu, Z., et al., Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct Target Ther, 2022. 7(1): p. 93.
2. https://www.zymeworks.com/technologies/azymetric/.
3. https://www.zymeworks.com/technologies/zymelink-auristatin/.
4. https://www.zymeworks.com/technologies/efect/.
5. https://www.zymeworks.com/technologies/protect/.
6. Sanches, M., et al., AlbuCORE: an albumin-based molecular scaffold for multivalent biologics design. MAbs, 2020. 12(1): p. 1802188.
7. https://www.zymeworks.com/technology/.
8. Bedard, P.L., et al., Zanidatamab (ZW25), a HER2-targeted bispecific antibody, in combination with chemotherapy (chemo) for HER2-positive breast cancer (BC): Results from a phase 1 study. CANCER RESEARCH, 2022. 82(4).
9. Pant, S., et al., A phase IIb, open-label, single-arm study of zanidatamab (ZW25) monotherapy in subjects with advanced or metastatic HER2-amplified biliary tract cancers. JOURNAL OF CLINICAL ONCOLOGY, 2021. 39(3).
10. Hamblett, K.J., et al., ZW49, a HER2-targeted biparatopic antibody-drug conjugate for the treatment of HER2-expressing cancers. Cancer Research, 2018. 78(13_Supplement): p. 3914-3914.
11. Tehrani, A., et al., Zymeworks’ 2018 R&D Briefing. 2018. p. 132.
12. Barnscher, S., et al., Zymelink drug conjugate platform: redefining the therapeutic window for ADCs. Cancer Research, 2017. 77(13_Supplement): p. 61-61.
13. Winters, G.C., et al., Preparation of cytotoxic and antimitotic peptide-based compounds conjugated to antibodies for treating cancers. 2016, Centre for Drug Research and Development, Can.; Zymeworks Inc. . p. 122 pp.
14. Tolcher, A., et al., A dose-escalation and expansion study of the safety and pharmacokinetics of XB002 in subjects with inoperable locally advanced or metastatic solid tumors (301). Gynecologic Oncology, 2022. 166: p. S158.
15.https://www.adcreview.com/news/zymeworks-wins-best-adc-platform-technology-award-for-zymelink/.
16. Bedard, P.L., et al., Abstract P2-13-07: Zanidatamab (ZW25), a HER2-targeted bispecific antibody, in combination with chemotherapy (chemo) for HER2-positive breast cancer (BC): Results from a phase 1 study. Cancer Research, 2022. 82(4_Supplement): p. P2-13-07-P2-13-07.
17. https://www.clinicaltrials.gov/ct2/results?cond=zw25&term=&cntry=&state=&city=&dist=.
18. https://www.zymeworks.com/pipeline/.
19. Jhaveri, K., et al., 460MO Preliminary results from a phase I study using the bispecific, human epidermal growth factor 2 (HER2)-targeting antibody-drug conjugate (ADC) zanidatamab zovodotin (ZW49) in solid cancers. Annals of Oncology, 2022. 33: p. S749-S750.
20. Colombo, R. and J.R. Rich, The therapeutic window of antibody drug conjugates: A dogma in need of revision. Cancer Cell, 2022. 40(11): p. 1255-1263.
21. https://seekingalpha.com/article/4227658-zymeworks-inc-blockbuster-in-making.
22. Barnscher, S., Design and Functional Characterization of Zanidatamab Zovodotin (ZW49), a HER2-targeting Biparatopic Antibody Drug Conjugate in Clinical Development. February 23, 2023: European Bispecific & Multispecific Antibody Congress.
23. Lawn, S., ZW191 – A FRa-Targeted ADC Employing Zymework’s TOPO1-Inhibitor Platform. March 16, 2023: World ADC London 2023.
24. https://www.zymeworks.com/technologies/topo1i-platform/.
25. TOPO1i ADC Platform: From Concept to Pipeline. March 2022: World ADC London 2022.
26. Petersen, M., et al., Zymeworks Topoisomerase 1 Inhibitor ADC Platform: From Concept to Pipeline. September 9, 2022: World ADC San Diego.
27. Johnson, M., et al., Abstract CT254: A first-in-human phase 1 study of the safety and pharmacokinetics of XB002 in patients with inoperable locally advanced or metastatic solid tumors. Cancer Research, 2022. 82(12_Supplement): p. CT254-CT254.
28. DeVorkin, L., et al., 1196 Streamlining T cell engager development with a diverse panel of fully human CD3-binding antibodies, bispecific engineering technology, and an integrated discovery engine. 2022, BMJ Specialist Journals.
29. Marguet, P., et al., ATRC-301: a novel EphA2-targeting ADC binding a unique epitope. 2022: World ADC Conference 2022.
30. Ackerman, S.E., et al., TLR7/8 immune-stimulating antibody conjugates elicit robust myeloid activation leading to enhanced effector function and anti-tumor immunity in pre-clinical models. Cancer Research, 2019. 79(13_Supplement): p. 1559-1559.
31. He, L., et al., Immune Modulating Antibody-Drug Conjugate (IM-ADC) for Cancer Immunotherapy. J Med Chem, 2021. 64(21): p. 15716-15726.
32. Diamond, J.R., et al., Abstract CT249: First-in-human study of TAK-500, a novel STING agonist immune stimulating antibody conjugate (ISAC), alone and in combination with pembrolizumab in patients with select advanced solid tumors. Cancer Research, 2022. 82(12_Supplement): p. CT249-CT249.
33. Duvall, J.R., et al., XMT-2056, a HER2-targeted Immunosynthen STING-agonist antibody-drug conjugate, binds a novel epitope of HER2 and shows increased anti-tumor activity in combination with trastuzumab and pertuzumab. Cancer Research, 2022. 82(12_Supplement): p. 3503-3503.
34. Janku, F., et al., Preclinical Characterization and Phase I Study of an Anti-HER2-TLR7 Immune-Stimulator Antibody Conjugate in Patients with HER2+ Malignancies. Cancer Immunol Res, 2022. 10(12): p. 1441-1461.
35. Garnett, G., et al., 1185 Optimization of purine-based TLR7 agonists as payloads for immune-stimulating antibody conjugates (ISACs). 2022, BMJ Specialist Journals.
36. Das, S., et al., Novel IgG1 Cysteine Insertion Sites Enable Site-Specific Conjugation and Precise Control of Drug to Antibody Ratio, in Antibody Engineering & Therapeutics Conference. December 5, 2022.
37. https://www.zymeworks.com/technologies/site-specific-conjugation-platform/.
38. Junutula, J.R., et al., Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol, 2008. 26(8): p. 925-32.
相关推荐
▼5月19-20日,上海;开疆拓土,智药新潮 |BiG双峰会
参会报名
/ 扫描下方二维码,立即报名 /