查看原文
其他

二十多年来第一次!CVPR最佳学生论文授予中国高校学生!

云布道师 2023-06-18

The following article is from 阿里技术 Author 阿里技术

凌云时刻

全球人工智能领域最具影响力的大会 CVPR 近日宣布,将 2022 年“最佳学生论文”奖颁给同济大学研二学生陈涵晟等人,这是二十多年来首次有中国高校学生获此殊荣。该论文是陈涵晟在阿里巴巴达摩院实习期间的成果,融合了传统几何推理和深度学习,提出了计算 3D 物体位姿(位置和朝向)的新方法,能从单张图片计算出 3D 物体在真实世界里的位置和朝向,有望成为自动驾驶、机器人等技术发展的理论动力。

CVPR(国际计算机视觉与模式识别会议)是人工智能领域的顶级学术会议,今年共收到 8161 篇论文投稿,最终录取 2064 篇,只评出最佳论文和最佳学生论文各 1 篇。CVPR 的最佳论文和最佳学生论文常被视作 AI 技术风向标,诞生了 ResNet 等一系列标志成果。

CVPR 早在 2001 年就设立最佳学生论文奖,今年首次发给中国高校学生。获奖论文《EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation 》来自同济大学汽车学院和阿里巴巴达摩院,作者分别是陈涵晟、王丕超、王帆、田炜、熊璐、李昊。

获奖证书

论文研究的是 3D 视觉领域经典问题,通过单张图像求解 3D 物体在真实世界里的位姿(位置和朝向)。这一技术方向应用前景广阔,是自动驾驶、机器人等行业的基础技术。比如在自动驾驶中,只有先计算出周边车辆的位姿,判断对方究竟是要加速、刹车还是变道,己方车辆才能做出对应操作,计算不准或者过慢都有可能引发事故。

3D 物体的位姿计算示意

通过单张图像定位 3D 物体极具挑战性。一般有两类解决方法:
  • 一类是基于几何推理,例如 PnP 算法,可解释性好、泛化能力强,但需要提前知道物体的尺寸和形状,具有较大的局限性;
  • 另一类是深度学习方法,可预测 3D 物体的位置坐标和朝向角度,但在小规模数据集上容易过度拟合。
获奖论文提出的新方法 EPro-PnP,创造性地引入了概率分布,将几何推理和深度学习两种方法无缝衔接,形成了一个端到端的易用模型,可以快速估算 3D 物体的位姿。实验证明,新模型通用性强、定位准确,不需要提前知道物体的几何形状;更重要的是非常简洁,效率较高,具有较好的可解释性,有望用于自动驾驶、机器人、无人机、AR等诸多需要通过视觉来估算物体位姿的场景。

EPro-PnP 方法示意

据了解,论文第一作者陈涵晟本科硕士均就读于同济大学汽车学院,目前研究生二年级在读,导师为熊璐教授,副导师为田炜助理教授,达摩院导师为王丕超博士。他的研究方向是计算机视觉中的 3D 物体位姿估计,研一就已在 CVPR 发表论文。2021 年到阿里达摩院做研究型实习生后,在达摩院日常研究讨论中碰撞出灵感,尝试去构造统一的理论框架。“我原来以为这篇论文可能比较冷门,因为太偏数学,没想到能够获奖。”陈涵晟说。
达摩院研究型实习生
同济大学研究生陈涵晟
论文第一通讯作者、达摩院算法专家王丕超博士表示,这篇论文的特别之处在于用数学的方式解决 AI 底层问题,带来了基础理论上的突破,对 3D 视觉领域的研究和应用都将产生积极影响。“核心创新是转换数学视角,引入概率密度,把不可导的函数变成可导,所以能通过反向传播来训练深度网络,最终实现稳定收敛,提升 3D 物体的定位精度。”
研究型实习生是阿里巴巴在 2017 年创立的科研项目,截至目前,已为全球 200 多所顶尖高校的 1000 多名学生提供了科研岗位。
【论文链接】
https://arxiv.org/abs/2203.13254

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存