其他
hello,大家好,我是张张,「架构精进之路」公号作者。一、数据切分介绍关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间。数据库分布式核心内容就是数据切分(Sharding),以及切分后对数据的定位、整合。数据切分就是将数据分散存储到多个数据库中,使得单一数据库中的数据量变小,通过扩充主机的数量缓解单一数据库的性能问题,从而达到提升数据库操作性能的目的。数据切分根据其切分类型,可以分为两种方式:垂直(纵向)切分和水平(横向)切分。1、垂直(纵向)切分垂直切分常见有垂直分库和垂直分表两种。垂直分库:根据业务耦合性,将关联度低的不同表存储在不同的数据库。做法与大系统拆分为多个小系统类似,按业务分类进行独立划分。与"微服务治理"的做法相似,每个微服务使用单独的一个数据库。如图:垂直分表:是基于数据库中的"列"进行,某个表字段较多,可以新建一张扩展表,将不经常用或字段长度较大的字段拆分出去到扩展表中。在字段很多的情况下(例如一个大表有100多个字段),通过"大表拆小表",更便于开发与维护,也能避免跨页问题,MySQL底层是通过数据页存储的,一条记录占用空间过大会导致跨页,造成额外的性能开销。另外数据库以行为单位将数据加载到内存中,这样表中字段长度较短且访问频率较高,内存能加载更多的数据,命中率更高,减少了磁盘IO,从而提升了数据库性能。1)优点解决业务系统层面的耦合,业务清晰与微服务的治理类似,也能对不同业务的数据进行分级管理、维护、监控、扩展等高并发场景下,垂直切分一定程度的提升IO、数据库连接数、单机硬件资源的瓶颈2)缺点部分表无法join,只能通过接口聚合方式解决,提升了开发的复杂度分布式事务处理复杂依然存在单表数据量过大的问题(需要水平切分)2、水平(横向)切分当一个应用难以再细粒度的垂直切分,或切分后数据量行数巨大,存在单库读写、存储性能瓶颈,这时候就需要进行水平切分了。水平切分分为库内分表和分库分表,是根据表内数据内在的逻辑关系,将同一个表按不同的条件分散到多个数据库或多个表中,每个表中只包含一部分数据,从而使得单个表的数据量变小,达到分布式的效果。库内分表只解决了单一表数据量过大的问题,但没有将表分布到不同机器的库上,因此对于减轻MySQL数据库的压力来说,帮助不是很大,大家还是竞争同一个物理机的CPU、内存、网络IO,最好通过分库分表来解决:1)优点不存在单库数据量过大、高并发的性能瓶颈,提升系统稳定性和负载能力应用端改造较小,不需要拆分业务模块2)缺点跨分片的事务一致性难以保证跨库的join关联查询性能较差数据多次扩展难度和维护量极大水平切分后同一张表会出现在多个数据库/表中,每个库/表的内容不同。几种典型的数据分片规则为:1)根据数值范围按照时间区间或ID区间来切分。例如:按日期将不同月甚至是日的数据分散到不同的库中;将userId为1~9999的记录分到第一个库,10000~20000的分到第二个库,以此类推。某种意义上,某些系统中使用的"冷热数据分离",将一些使用较少的历史数据迁移到其他库中,业务功能上只提供热点数据的查询,也是类似的实践。①优点单表大小可控天然便于水平扩展,后期如果想对整个分片集群扩容时,只需要添加节点即可,无需对其他分片的数据进行迁移使用分片字段进行范围查找时,连续分片可快速定位分片进行快速查询,有效避免跨分片查询的问题②缺点热点数据成为性能瓶颈。连续分片可能存在数据热点,例如按时间字段分片,有些分片存储最近时间段内的数据,可能会被频繁的读写,而有些分片存储的历史数据,则很少被查询。2)根据数值取模一般采用hash取模mod的切分方式,例如:将