其他
生物体的正常运转依赖一系列时空协调的细胞和亚细胞活动,观察和记录这些现象是了解它们的第一步。荧光显微镜与不断发展的荧光探针相结合,为科学家提供了一种具有良好分子特异性和高时空分辨率的观测工具。荧光成像的最新进展使我们能够以前所未有的时空分辨率解析生命活动机制,从纳米尺度的细胞器相互作用,到胚胎发育过程中的细胞足迹,再到与特定行为同步的全脑神经活动。荧光成像的一个基本挑战是光子探测不可避免的随机性导致的光子散粒噪声,这是由光的量子本质决定的。从根本上说,所有测量过程都服从量子力学定律,最直接的表现就是任何测量过程都存在精度的上限,光学成像领域的这个极限被称为光子噪声极限。在理论上,光子噪声极限规定了成像信噪比的上界;在实践上,固有的光子噪声会增加测量的不确定性,降低图像质量,并限制成像的分辨率、速度和灵敏度等各个方面。光子噪声是前沿科学观测中绕不开的障碍,Nature杂志曾以“A