其他
点蓝色字关注“机器学习算法工程师”设为星标,干货直达!DropBlock是谷歌在2018年提出的一种用于CNN的正则化方法。普通的DropOut只是随机屏蔽掉一部分特征,而DropBlock是随机屏蔽掉一部分连续区域,如下图所示。图像是一个2D结构,像素或者特征点之间在空间上存在依赖关系,这样普通的DropOut在屏蔽语义就不够有效,但是DropBlock这样屏蔽连续区域块就能有效移除某些语义信息比如狗的头,从而起到有效的正则化作用。DropBlock和CutOut有点类似,只不过CutOut是用于图像的一种数据增强方法,而DropBlock是用在CNN的特征上的一种正则化手段。DropBlock的原理很简单,它和DropOut的最大区别是就是屏蔽的地方是一个连续的方块区域,其伪代码如下所示:DropBlock有两个主要参数:block_size和,其中block_size为方块区域的边长,而控制被屏蔽的特征数量大小。对于DropBlock,首先要用参数为的伯努利分布生成一个center