查看原文
其他

拓扑相变与拓扑相荣获2016诺贝尔物理学奖

2016-10-04 中国物理学会期刊网




北京时间10月4日下午5点45分,瑞典皇家科学院宣布将2016年诺贝尔物理学奖授予David J. Thouless, F. Duncan M. Haldane, 和J. Michael Kosterlitz,表彰他们在拓扑相变和拓扑相的杰出贡献


 has decided to award the Nobel Prize in Physics 2016 with one half to

David J. Thouless
University of Washington, Seattle, WA, USA

and the other half to

F. Duncan M. Haldane
Princeton University, NJ, USA

and

J. Michael Kosterlitz
Brown University, Providence, RI, USA

”for theoretical discoveries of topological phase transitions and topological phases of matter”



David J. Thouless,1934年出生于苏格兰,康奈尔大学博士毕业,华盛顿大学教授,理论凝聚态物理学家。因KT相变而著称。



Duncan Haldane,普林斯顿大学Eugene Higgins Professor of Physics,理论物理学家,英国皇家学会会员,在凝聚态物理理论做出基础性贡献,包括分数量子霍尔效应。


J. Michael Kosterlitz, Brown University, Providence, RI, USA


They revealed the secrets of exotic matter

This year’s Laureates opened the door on an unknown world where matter can assume strange states. They have used advanced mathematical methods to study unusual phases, or states, of matter, such as superconductors, superfluids or thin magnetic films. Thanks to their pioneering work, the hunt is now on for new and exotic phases of matter. Many people are hopeful of future applications in both materials science and electronics.

The three Laureates’ use of topological concepts in physics was decisive for their discoveries. Topology is a branch of mathematics that describes properties that only change step-wise. Using topology as a tool, they were able to astound the experts. In the early 1970s, Michael Kosterlitz and David Thouless overturned the then current theory that superconductivity or suprafluidity could not occur in thin layers. They demonstrated that superconductivity could occur at low temperatures and also explained the mechanism, phase transition, that makes superconductivity disappear at higher temperatures.

In the 1980s, Thouless was able to explain a previous experiment with very thin electrically conducting layers in which conductance was precisely measured as integer steps. He showed that these integers were topological in their nature. At around the same time, Duncan Haldane discovered how topological concepts can be used to understand the properties of chains of small magnets found in some materials.

We now know of many topological phases, not only in thin layers and threads, but also in ordinary three-dimensional materials. Over the last decade, this area has boosted frontline research in condensed matter physics, not least because of the hope that topological materials could be used in new generations of electronics and superconductors, or in future quantum computers. Current research is revealing the secrets of matter in the exotic worlds discovered by this year’s Nobel Laureates.





十大热门文章

1.   天宫二号发射成功

2.   中秋节嫦娥话月球

3.    时间的沙漏

4.    谷电子自由度电学调控的首次实现

5.    追忆恩师王竹溪先生和我的机缘 || 李荫远

6.    二维半导体中的能谷电子学

7.    转瞬九十载

8.    从乌蒙山到念青唐古拉——百年宇宙线研究的中国故事

9.    物理学咬文嚼字之七十八:Reciprocity——对称性之上的对称性

10.  纳尼,室温超导体来了!?

END


更多精彩文章,请关注微信号:cpsjournals


长按指纹 > 识别图中二维码 > 添加关注


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存