查看原文
其他

中国医疗人工智能发展报告(2019)


01

首部“人工智能蓝皮书”发布,指出我国医疗人工智能发展中的五方面挑

01

政策与监管的挑战

2017年7月,国务院发布《国务院关于印发新一代人工智能发展规划的通知》,人工智能上升为国家战略,国家对医疗人工智能的发展提出了更高要求,医疗人工智能进入全新的高速发展轨道。国家的医疗人工智能发展要求包括提出医学大数据、医学信息化、智能医学等多个方面的具体应用需求,对医疗人工智能基础研究的政策支持,以及对大健康、老龄化等方面的医疗人工智能应用的大力支持。

基于以上纲领性文件,针对医疗人工智能的发展提出具体落实行动,将成为相关部门政策制定的重点,预计将发布一大批具体的推进方略,下大力气促进医疗人工智能领域的发展与提升。2018年以来,围绕医疗人工智能发展的重点政策领域包括:满足民营医院的设备需求,鼓励各级医院采购国产高端医疗设备;着力构建大数据云端医疗数据库,推动医学大数据的开发与落地,大力加强医疗信息化基础建设;鼓励民间资本投资远程医疗和第三方检验中心,全面推进分级诊疗的落地;大力发展网络医学影像平台、高端影像设备、第三方影像中心、大力推进影像信息化等。

02

技术和人才的挑战

据相关研究,医疗人工智能处在人工智能热潮的中心地位,有非常快的发展速度。医疗人工智能的技术和人才水平高,有可能尽快实现产业化,相关原因包括:第一,医疗人工智能研究机构与国内的各大医院合作开展了科学研究、临床实验、产业转化等工作;第二,医疗人工智能的研究机构众多,包括科研单位、高校、大企业、创业企业等,造就了一大批奋战在一线的医疗人工智能科研机构;第三,医疗人工智能有较好的投资盈利预期,得到资本方面的追捧;第四,医疗人工智能是人工智能应用的热门领域,在多种维度的医学图像识别领域,拥有丰富的技术和设备等资源。

医疗人工智能的快速发展来自迅速增长的医学大数据规模、快速提高的GPU速度和医疗人工智能理论基础的飞跃,决定于医疗人工智能的算法、算力、数据等关键技术因素。

03

数据库建设的挑战

高质量数据获取、标注和更新是医疗人工智能企业的关键能力。我国拥有十多亿人口、上万家医院,每年产生规模巨大的医疗健康数据,其中包括医学影像数据。但是,在如此大量的医疗健康数据中,绝大部分是非结构化数据,标准化、统一化、智能化程度非常低,难以进行综合利用,对政府部门、医院、科研院所、高校等机构来说也并非有效的价值体系。

训练集合的质量和数量是决定人工智能算法的性能(performance)的主要因素之一。其中,训练数据的质量和标注的质量决定着人工智能算法的学习能力,而训练数据的数量决定人工智能算法的泛化能力。在美国英伟达不断推出高性能GPU服务器,提供更大的人工智能计算能力的前提下,高质量和大规模的医学数据就变得更加重要起来。

医疗人工智能的大发展推动健康大数据时代的来临,全球医疗数据呈现爆炸式增长的趋势。医疗健康行业的数据量非常大,建设中的三个“国家医学数据中心”的量级都在EP级别,单个患者的医疗全过程数据也达到TB级别。近年来,我国医院信息化能力大大提升,其使用电子病历的比例也大幅增加了。

在医疗人工智能领域,获取和标注高质量的医学影像数据有非常大的难度,具体表现如下。

第一,医学影像数据的前处理和标注的代价巨大。在医疗人工智能领域,医学影像数据前处理和标注的代价巨大,占据开发成本的绝大部分。然而,在医疗人工智能算法开源的时代,医学影像数据前处理和标注的质量对医疗人工智能的性能有着举足轻重的影响。按照多中心来源的要求,医学影像数据的来源多种多样,需要进行前处理,以保证医学影像训练数据的有效性。现有的医学影像数据主要通过人工的方式进行标注,工作量巨大,耗费大量的人力、物力和财力。

第二,医学影像数据获取的代价巨大。由于现代医学影像技术的飞速发展,医学影像数据的产生技术也变得越来越复杂,客观上加大了医学影像数据的获取和使用难度。同时,因为医学影像数据具有私密性,医疗人工智能数据的拥有方在医学影像数据的保护方面不遗余力,这也加大了医疗人工智能研发单位获取数据的难度。

第三,我国幅员辽阔、人口众多,基层医院和研究型医院的差异巨大。为了在多种多样的场景下获得足够的灵敏度和特异性,医疗人工智能算法和软件的泛化能力面临巨大的挑战。

政府、医院等各方面需要携手合作,解决获取医学影像数据代价巨大的问题。从政府层面来讲,由国家卫健委牵头的国家健康医疗大数据中心正在修建之中,预计建成以后数据储量为1000ZB。国家健康医疗大数据中心的构成方式为“一个国家中心,三个国家队”,即该中心包括中国健康医疗大数据股份有限公司、中国健康医疗大数据产业发展集团公司和中国健康医疗大数据科技发展集团公司三个主体。国家健康医疗大数据中心的数据中心包括华东数据中心、华北数据中心、东北数据中心、西南数据中心和各省市级中心,其中各省市级中心的设置地点包括宁波、山东、四川、江西、辽宁、广东、贵州、甘肃、安徽、黑龙江、云南、内蒙古、陕西。国家健康医疗大数据中心的建设将极大推动我国医疗人工智能事业的迅速发展。

04

商业模式与运营的挑战

医疗人工智能企业如何获得利润?这是社会各方面,包括政府部门、投资机构、医疗人工智能企业、医院、医疗人工智能运营机构共同关注的问题。随着医疗人工智能的不断发展,多款医疗人工智能产品已经开发出来,包括基于眼底照片的糖尿病筛查、基于薄层CT的肺部结节筛查等。这些医疗人工智能产品即将获得国家许可,其走向市场可能的商业途径主要包括两个方面:第一,将医疗人工智能产品出售给大型运营机构,包括政府部门、投资机构、医疗人工智能企业、医院、医疗人工智能运营机构,实现盈利;第二,与第三方运营机构,包括政府部门、投资机构、医疗人工智能企业、各级医院、医疗人工智能运营机构合作,实现盈利。

05

法律与伦理的挑战

(1)成果转化周期长、难度大

针对医疗人工智能产品的审评与注册问题,2014年2月,国家食品药品监督管理总局开辟快速通道,《创新医疗器械特别审批程序(试行)》(食药监械管〔2014〕13号)提出,对符合规定的创新医疗器械设置快速审批通道。

(2)医疗人工智能数据保护

医疗人工智能软件需要大量使用数据,包括训练数据和患者临床的数据。在美国,医疗人工智能产品需要符合《隐私法案》及HIPAA的规定。但是,我国尚未出台相关法律,医疗人工智能的数据保护工作还没有法律规定可以规范。关于医疗人工智能软件牵涉的患者临床数据的安全保障规定,可以参考我国颁布的《网络安全法》第四十一条和第六十四条。我国颁布的《网络安全法》第四十一条规定:“网络运营者收集、使用个人信息,应当遵循合法、正当、必要的原则,公开收集、使用规则,明示收集、使用信息的目的、方式和范围,并经被收集者同意。网络运营者不得收集与其提供的服务无关的个人信息,不得违反法律、行政法规的规定和双方的约定收集、使用个人信息,并应当依照法律、行政法规的规定和与用户的约定,处理其保存的个人信息。”我国颁布的《网络安全法》第六十四条规定:“网络运营者、网络产品或者服务的提供者违反本法第二十二条第三款、第四十一条至第四十三条规定,侵害个人信息依法得到保护的权利的,由有关主管部门责令改正,能根据情节单处或者并处警告、没收违法所得、处违法所得一倍以上十倍以下罚款,没有违法所得的,处一百万元以下罚款,对直接负责的主管人员和其他直接责任人员处一万元以上十万元以下罚款;情节严重的,并能责令暂停相关业务、停业整顿、关闭网站、吊销相关业务许可证或者吊销营业执照。”

(3)法律法规滞后,监管无法可依

医疗人工智能产品的注册、使用、监管等法律法规正在制定之中,有待完善。以医疗人工智能产品的注册为例,根据我国《医疗器械注册管理办法》的规定,在中华人民共和国境内销售、使用的医疗器械,应当按照本办法的规定申请注册或者办理备案。因此,医疗人工智能产品需要办理注册和备案。为加强医疗器械产品注册工作的管理、指导和技术审评工作,国家食品药品监督管理总局制定了相应医疗人工智能产品的注册指导原则。国家卫生与健康委员会、国家发改委、工信部等机构也在积极调研、起草和制定医疗人工智能产品的使用、监管等法律法规,确保医疗人工智能造福于民。

(4)医疗人工智能的知识产权判定

在我国现有的法律体系中,医疗人工智能的知识产权还难以清晰判定。我国的知识产权判定依据的主要法律是《著作权法实施条例》,尚没有对医疗人工智能的知识产权的判定做出详细规定,在实践操作中有相当大的难度。


02

我国医疗人工智能企业发展面临四方面问题

人工智能在医疗领域的应用刚刚起步,成长过程中遇到了来自各个层面的问题,由于产品成熟度不足而受到质疑,离真正临床应用尚有距离。目前阻碍医疗人工智能领域研发与应用的问题主要有以下几方面:

01

医学数据问题

首先,数据来源的合法合规性目前还比较模糊。要保证数据来源符合相关法律、法规及伦理,患者对数据提供要具有知情权。中国政府也高度重视医疗人工智能的发展。2017年2月,国家卫计委已发布四份医疗领域应用人工智能的规范标准,从国家层面鼓励人工智能在辅助诊断和治疗等技术应用领域的发展,同时为人工智能医疗的规模化应用提供了基础保障。但基于患者的流动性,需要通过平台来实现这种不同系统之间的信息共享和业务协同。政策要求目前数据的管理方医院和政府要保护好隐私,在科研的前提下使用这些数据。而医疗数据属国家的财产,或由医院和患者共同所有,中国目前在企业对数据的使用规则等方面,没有详细的法律规定,医疗数据的归属权、使用权、存储权、交易权利不明确。《新一代人工智能发展规划》指出,国家将于2025年初步完成法律政策的制定,规范医疗数据的各类权利。在此之前,医疗人工智能企业可以利用这一政策真空期,使用医疗数据构建产品诊断模型。

其次,数据标注的质量缺乏保障。目前,数据标注采用客观金标准,对于无金标准的医疗数据标注标签,采用多位医生共同诊断并取一致诊断结果为标签。当前医疗人工智能企业的医疗数据标注队伍混乱,标注质量不一致。中检院在构建肺结节标准库的过程中,招募全国影像科医生志愿者进行标注,发现标注准确率仅30%。医疗人工智能企业标注影像存在标注方法、标注工具、标注平台不统一的问题。数据标注往往需要医生投入巨大的精力,应当保证数据能够共享,一方面避免重复劳动,另一方面让预测更准确。

最后,数据共享问题也制约了医疗人工智能产品的研发。目前,医疗人工智能诊断模型主要采用“有监督学习”的算法,为了让算法有更高的准确率,需要大量数据进行训练。模型的准确率和数据规模及质量始终成正比,准确率并没有出现趋于平滑的拐点,这说明深度学习对数据有源源不断的需求。2015年,大数据上升到国家战略层面,推进数据资源开放共享成为题中应有之义,但医疗数据如各自独立的孤岛,在各医院中使用,连国家部委也很难打通数据壁垒。要以业务、场景和需求动数据共享的实现通过商业利益打通数据壁垒,激发医院的活力。

02

复合型人才问题

近几年,很多高校已经设立了人工智能专业。但医疗人工智能领域所需人才不仅要掌握人工智能相应技术,更要了解医学理论,掌握临床相关知识,理解医疗业务流程。目前我国的人工智能人才培养机制尚无法满足医疗领域专门人才培养需求。医疗人工智能从业者只能深入医院,与医生为伍,技术人才与医疗人才一同工作、一起成长是当前常用的模式。

03

行业标准问题

行业标准包括数据的获取、标注,模型效果的评价、对比等。大多数医疗机构对于采购和使用医疗人工智能产品的态度是谨慎的,主要原因是此类产品缺乏相关标准,无法得到国家认证许可。为确保医疗质量和患者安全,医疗人工智能产品要让医生敢用,让患者放心,就必须通过国家标准认证,但目前国家层面的相关技术标准仍不健全。

04

医疗机构的合作

医疗人工智能产品从研发到使用,都基于医疗数据的大量提供以及高质量标注,而医疗数据存储于各类医疗机构或卫生管理部门的系统当中,高质量的数据标注也离不开医疗专家的合作。即使医疗机构从提高服务效率、提升服务质量、减少误诊误治的角度出发,有意愿与企业合作开展医疗人工智能产品研发,但在缺乏医疗数据应用和共享相关法律法规的情况下,研发合作的模式也无法成熟稳定。目前最广泛的合作模式是企业与医疗机构合作进行相关医疗人工智能的科研,但科研成果转化为成熟产品也有很长的路要走,涉及知识产权、利益分配、品牌所有权等诸多因素。


为便于研究人员查找相关行业研究报告,特将2018年各期文章汇总。欢迎点击下面红色字体查阅!


文琳行业研究 2018—2019文章汇总


文琳编辑

今日导读:点击下面链接可查阅

公众号 :文琳行业研究

  1. 《中国养老金精算报告》发布:2035年养老保险结余耗尽

  2. 2019中国养老产业发展剖析与发展趋势分析报告

  3. 养老行业深度报告

  4. 健康管理蓝皮书:中国健康管理与健康产业发展报告No.2(2019)

  5. 2019中国家政服务行业发展剖析及行业投资机遇分析报告

  6. 2019美国癌症报告


文琳行研报告,为各机构提供专业的信息、数据、研究和咨询服务。欢迎关注【文琳行业研究】


文琳资讯,每日提供最新信息。欢迎关注【文琳资讯】

今日导读:点击下面链接可查阅

  1. 【读报时间】2019.06.07星期五

  2. 国家发改委:大幅降低新能源汽车成本 积极推进5G手机商业应用

  3. 5G时代开启,重庆、成都、西安已输给武汉苏州?

  4. 5月小阳春彻底结束,2019年下半年行情已成定局

  5. 福布斯中国30岁以下精英榜单里,有多少骗子?

《文琳阅读》每晚经典,欢迎关注!

文琳编辑

今日导读:点击下面链接可查阅

公众号 :文琳阅读

  1. 一个人最大的能力,是让人对你放心

  2. 丢失的孩子都去哪里了?他历时两年跟拍,揭开中国儿童拐卖之殇…

  3. 摧毁你健康的,是人人信以为真的这十大“好习惯”

  4. 还真有人给自行车装了螺旋桨,太带劲了。。。

  5. 音乐欣赏:刘若英《幸福不是情歌》



继续滑动看下一个
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存