2021时空AI赋能数字孪生城市白皮书
人工智能(AI)的发展从感知阶段进入认知和预知阶段。AI的发展已经渗入到多个应用领域。最近几年,尤其是全球疫情的爆发让大家认识到“时空大数据+AI”在科技抗疫防控中产生了巨大的价值。AI技术与地理空间智能、城市空间智能、时空大数据智能、数字孪生城市的发展产生了深度的融合,推动了AI在认知和预知层面的创新与发展。
我们看到这些领域无论在理论方面、还是技术创新和应用实践方面,一个核心的底层创新是基于时空的人工智能:时空人工智能(Spatio-Temporal AI)。随着城市数字孪生的发展,时空人工智能(ST-AI)开始受到产学研的广泛重视,为此我们组织行业专家首次发布这本白皮书“时空人工智能赋能数字孪生城市(2021)”。本书的发布旨在推动AI技术与城市数字孪生的场景结合,通过场景应用推动技术升级,通过技术创新赋能城市数字化转型。
时空人工智能是AI领域的新型创新应用技术,定义为以时空为‘索引’对多源异构数据进行时空化治理和融合,并借力知识工程和AI算法进行智能化分析,从而挖掘知识和辅助决策。时空AI是地理空间智能、城市空间智能和时空大数据智能等的统一表示,包括从时空感知、认知到决策预知的多项核心技术。其应用生态领域非常广泛,包括智慧城市、智能交通、智能园区、智能零售、智能地产、智能商业等多个领域。
人工智能(AI)领域的技术进步给地理空间相关研究和应用的智能化发展和融合创新带来了新机遇和新挑战。虽然早期人工智能概念的提出和理论算法的发展可以追述到20世纪40~50年代,但其近期快速发展的主要动力来自于深度学习模型和开发框架(如Tensorflow、Keras、PyTorch)的快速发展和产业化日趋成熟,各行业领域大数据的生产爆发,和计算机硬件(如图形处理单元GPU和高性能计算平台HPC)和终端设备的计算性能不断升级,进而可以支持在很短的时间内训练和部署人工智能模型、支持数据驱动的智能化决策和产业变革。
地理空间人工智能(Geospatial Artificial Intelligence,简称GeoAI),是指地理空间相关科学与人工智能相结合的交叉学科研究方向,通过研究与开发机器的空间智能提升对于地理现象的动态感知、智能推理和知识发现能力,并寻求解决人类和地球环境系统相互作用中的重大科学和工程问题 (比如人口迁移预测、城市扩张预测模拟、复杂条件下的智能交通决策、高精地图制作与自动驾驶、全球变化对农业产的影响、自然灾害应急救援工程等)。地理空间智能的萌芽与发展与地理学、地图学与地理信息系统、遥感科学与技术、地球系统科学、资源环境与城乡规划、智能交通和计算机科学(尤其是机器学习和知识图谱)等学科间的交叉融合、创新发展紧密结合。
来源:维智科技
文琳编辑
免责声明:转载内容仅供读者参考,观点仅代表作者本人,不构成投资意见,也不代表本平台立场。若文章涉及版权问题,敬请原作者添加 wenlin-swl 微信联系删除。
为便于研究人员查找相关行业研究报告,特将2018年以来各期文章汇总。欢迎点击下面红色字体查阅!
文琳编辑
今日导读:点击下面链接可查阅
公众号 :文琳行业研究
文琳行研报告,为各机构提供专业的信息、数据、研究和咨询服务。欢迎关注【文琳行业研究】
《文琳阅读》每晚经典,欢迎关注!
文琳编辑
今日导读:点击下面链接可查阅
公众号 :文琳阅读
公众号 :就业与创业