比翱工程实验室丨用于宽频带缓解流致振动的共振超材料设计
来源:interNoise 2021
在过去的几十年中,为了降低进入车辆和飞机舱室的噪音水平,以获得更好的噪音舒适性,人们特别关注降低由气流诱导振动引起的噪音[1–3]。由流致振动引起的噪声问题通常在低频范围内占主导地位,其中存在最高能量含量[4,5]。不同的噪音、振动和声振粗糙度(NVH)解决方案已经被研究来解决这个噪声问题[6-8]。然而,除了在较低频率范围内表现不佳之外,这些措施通常会导致笨重的NVH解决方案[9]。因此,需要寻求低质量和低体积措施,以在低频率下实现理想的NVH降低性能,同时确保轻量化设计。
事实上,局部共振超材料(LRMs:Locally Resonant Metamaterials)已被证明是一种很有前景的解决方案,可在明确定义的频率范围内减少声振系统[10, 11]的流动引起的NVH行为,称为阻带,这是不允许自由波传播的频率区[12]。可以通过在亚波长尺度上的主体结构上添加共振元件来实现[13]。
尽管如此,这些阻带通常在有限的频率范围内具有积极影响,并且考虑到此类激励类型的宽带特性,需要使用其他技术来使LRM解决方案在阻带频率范围之外更有利地执行。为此,这项工作提出了一种在空气动力学激励下对LRM结构的宽带振动声学行为进行数值建模和优化的方法。为了实现这一目标,使用由两个规则间隔的谐振附加网格组成的板的有限元(FE)模型:(i)第一个网格包含调谐到相同标称频率的谐振元件,以实现阻带行为和(ii)对于第二个网格,通过优化找到每个谐振器的调谐频率,以减少阻带区域外主体结构的振动响应。为了加速优化过程,使用了模型降阶(MOR)方案,即Craig-Bampton方法[14]。
为了说明研究中的空气动力学激励,在实验流设置中测量了由于掠流引起的频率相关压力波动,并将其用作数值模型中的力激励。鉴于未来的实验验证,选择这种方法来重现更真实的激发条件。
研究创新
该项研究提出了一种有限谐振超材料板(Finite Resonant Metamaterial Plate)的设计方法和一种对局部共振超材料(LRM)板进行数值建模和优化的方法,以实现对流致振动的宽带缓解。
图文快览
表1:钢板的材料特性
图1:a) 麦克风阵列和b) 施加载荷的板的有限元网格的表示
图2:在U=19 m/s的掠流激发下裸板的RMS PSD速度
图3:谐振器图案和可实现的单元的示意图
表2:聚甲基丙烯酸甲酯(PMMA)的材料特性
图4:a)谐振器设计b)谐振器的平面外弯曲模态,用于创建阻带和c)具有不同尺寸的谐振器的图示
图5:单谐振器型(SRT)情况下的频散图,其中灰色阴影区域表示预测的阻带。还描绘了不可约布里渊轮廓的表示以及相应波空间的草图
图6:板和谐振器的草图,用于模型降阶(MOR)的可视化表示。属于板的深绿色区域和谐振器灰色区域的节点的自由度被压缩。保留节点的自由度:连接区域(板上的浅绿色区域),施力位置(红点),单元格交叉点和谐振器的基极连接区
图7:建立和优化共振超材料结构数值模型的主要步骤草图,以实现降低宽频带流致振动
图8:在U=19 m/s的掠流激励下,具有用于网格B的谐振器优化配置的裸板、SRT和板的RMS PSD速度比较。右侧说明了网格B的频率分布
[1] JF Wilby and FL Gloyna. Vibrationmeasurements of an airplane fuselage structure i. turbulent boundary layer excitation. Journal of Soundand Vibration, 23(4):443–466, 1972.
[2] MS Howe and PL Shah. Influence of meanflow on boundary layer generated interior noise. The Journal of the AcousticalSociety of America, 99(6):3401–3411, 1996.
[3] Bilong Liu, Hao Zhang, Zhongchang Qian,Daoqing Chang, Qun Yan, and Wenchao Huang.Influence of stieners on plate vibrationand radiated noise excited by turbulent boundary layers.Applied Acoustics, 80:28–35, 2014.
[4] William K Blake. Mechanics offlow-induced sound and vibration. volume 1 general concepts and elementary source. volume 2-complexflow-structure interactions. Aplikace Matematiky,Applied Mathematics, 1, 1986.
[5] Wayne A Strawderman and Ronald S Brand.Turbulent-flow-excited vibration of a simply
supported, rectangular flat plate. TheJournal of the Acoustical Society of America, 45(1):177–192, 1969.
[6] WR Graham. Boundary layer induced noisein aircraft, part i: The flat plate model. Journal of
Sound and Vibration, 192(1):101–120, 1996.
[7] CK Barton and JS Mixson. Noisetransmission and control for a light twin-engine aircraft.Journal of aircraft, 18(7):570–575, 1981.
[8] WV Bhat and JF Wilby. Interior noiseradiated by an airplane fuselage subjected to turbulent boundary layer excitation and evaluation ofnoise reduction treatments. Journal of Sound and Vibration, 18(4):449–464, 1971.
[9] Roberto Camussi. Noise sources inturbulent shear flows: fundamentals and applications,
volume 545. Springer Science & BusinessMedia, 2013.
[10] Felipe Alves Pires, Luca Sangiuliano,Hervé Denayer, Elke Deckers, Claus Claeys, and Wim Desmet. Suppression of flow-induced noiseand vibrations by locally resonant metamaterials.In AIAA AVIATION 2020 FORUM, page 2586,2020.
[11] Felipe Alves Pires, Hervé Denayer,Elke Deckers, Claus Claeys, and Wim Desmet. Reduction of vortex-induced vibrations by locallyresonant metamaterials. PROCEEDINGS OF ISMA2020 AND USD2020, 2020.
[12] Leon Brillouin. Wave propagation inperiodic structures: electric filters and crystal lattices.
Courier Corporation, 2003.
[13] Zhengyou Liu, Xixiang Zhang, YiweiMao, YY Zhu, Zhiyu Yang, Che Ting Chan, and Ping Sheng. Locally resonant sonic materials.science, 289(5485):1734–1736, 2000.
[14] Roy R Craig Jr and Mervyn CC Bampton.Coupling of substructures for dynamic analyses.AIAA journal, 6(7):1313–1319, 1968.
[15] Wim De Roeck and Wim Desmet.Experimental acoustic identification of flow noise sources in expansion chambers. In Proceedings ofISMA 2008: International Conference on Noise and Vibration Engineering, volume 1, pages455–470. Katholieke Universiteit Leuven, Departement Werktuigkunde; Leuven, 2008.
[16] Claus Claeys, Noé Geraldo Rocha deMelo Filho, Lucas Van Belle, Elke Deckers, and Wim Desmet. Design and validation ofmetamaterials for multiple structural stop bands in waveguides. Extreme Mechanics Letters,12:7–22, 2017.
[17] Claus C Claeys, Karel Vergote, PaulSas, andWim Desmet. On the potential of tuned resonators to obtain low-frequency vibrational stopbands in periodic panels. Journal of Sound and Vibration, 332(6):1418–1436, 2013.
[18] Felix Bloch. Über die quantenmechanikder elektronen in kristallgittern. Zeitschrift für physik, 52(7-8):555–600, 1929.
[19] Noé Geraldo Rocha de Melo Filho,Andrea Angeli, Sjoerd van Ophem, Bert Pluymers, Claus Claeys, Elke Deckers, and Wim Desmet.Design space exploration for resonant metamaterials using physics guided neural networks.Proceedings of ISMA 2020, 2020.
[20] FA Pires, C Claeys, E Deckers, and WDesmet. The impact of resonant additions’ footprint on the stop band behavior of 1d locallyresonant metamaterial realizations. Journal of Sound and Vibration, 491:115705, 2021.
[21] Siemens Digital Industries Software,simcenter heeds 2020.1. https://www.plm. automation.siemens.com/global/en/products/simcenter/simcenter-heeds.html.Accessed: 2021-05-14.
[22] N Chase, M Redemacher, E Goodman, RAverill, and R Sidhu. A benchmark study of optimization search algorithms. Red CedarTechnology, MI, USA, pages 1–15, 2010.
[23] Daniel John Jagodzinski, MatthiasMiksch, Quirin Aumann, and Gerhard Müller. Modeling and optimizing an acoustic metamaterial tominimize low-frequency structure-borne sound.Mechanics Based Design of Structures andMachines, pages 1–15, 2020.
[24] Michele Zilletti, Stephen J Elliott,and Emiliano Rustighi. Optimisation of dynamic vibration absorbers to minimise kinetic energy andmaximise internal power dissipation. Journal of sound and vibration, 331(18):4093–4100, 2012.
[25] Hong-Nan Li and Xiang-Lei Ni.Optimization of non-uniformly distributed multiple tuned mass damper. Journalof Sound and Vibration, 308(1-2):80–97, 2007.