关于stata的面板数据处理(最全笔记)
面板数据是非常常见的数据类型,尤其是在经济、金融的研究中,面板数据、时间序列数据的相关模型,得到了极大地发展和广泛的应用。
面板数据简介
面板数据,简言之是时间序列和截面数据的混合。严格地讲是指对一组个体(如居民、国家、公司等)连续观察多期得到的资料。所以很多时候我们也称其为“追踪资料”。近年来,由于面板数据资料获得变得相对容易,使得其应用范围也不断扩大。采用面板数据模型进行分析的主要目的在于两个方向:一是控制不可观测的个体异质性,包含两个方面:一是由于民族习惯、风俗文化而形成的、不随着时间移动而改变的个体效应。二是在特定年份而出现的时间效应;二是描述和分析动态调整过程,处理误差成分。使模型包含的信息量更大,降低了变量间共线性的可能性,增加了自由度和估计的有效性。
面板数据,即Panel Data,是截面数据与时间序列综合起来的一种数据资源。在分析时,多用PanelData模型,故也被称为面板数据模型。它可以用于分析各样本在时间序列上组成的数据的特征,它能够综合利用样本信息,通过模型中的参数,既可以分析个体之间的差异情况,又可以描述个体的动态变化特征。
面板数据基本上可以认为是同一个截面的观测样本在不同时间节点的重复测量和记录;或者同样也可以认为是若干个结构、记录时间、记录选项相同的时间序列数据的复合结构。因此,在针对面板数据进行分析时候,通常可以使用截面数据的一些方法,同样也可以使用时间序列的一些方法。方法之间的共通性在这一“混合”类型的数据中体现的还是十分明显的。
面板数据stata常见命令
以下都是常用面板命令,不作详细解释。
xtset Declare a dataset to be panel data
xtdescribe Describe pattern of xt data
xtsum Summarize xt data
xttab Tabulate xt data
xtdata Faster specification searches with xt data
xtline Line plots with xt data
xtreg Fixed-, between- and random-effects, and population-averaged linear models
xtregar Fixed- and random-effects linear models with an AR(1) disturbance
xtmixed Multilevel mixed-effects linear regression
xtgls Panel-data models using GLS
xtpcse OLS or Prais-Winsten models with panel-corrected standard errors
xthtaylor Hausman-Taylor estimator for error-components models
xtfrontier Stochastic frontier models for panel data
xtrc Random coefficients models
xtivreg Instrumental variables and two-stage least squares for panel-data models
xtunitroot Panel-data unit-root tests
xtabond Arellano-Bond linear dynamic panel-data estimator
xtdpdsys Arellano-Bond/Blundell-Bond estimation
xtdpd Linear dynamic panel-data estimation
xttobit Random-effects tobit models
xtintreg Random-effects interval-data regression models
xtlogit Fixed-effects, random-effects, & population-averaged logit models
xtprobit Random-effects and population-averaged probit models
xtcloglog Random-effects and population-averaged cloglog models
xtpoisson Fixed-effects, random-effects, & population-averaged Poisson models
xtnbreg Fixed-effects, random-effects, & population-averaged negative binomial models
xtmelogit Multilevel mixed-effects logistic regression
xtmepoisson Multilevel mixed-effects Poisson regression
xtgee Population-averaged panel-data models using GEE
面板数据随机效应
与固定效应检验
模型设定过程中最为关键同时也是最难的一步,在这方面功力的提高还需要大量的实践经验和对理论的深入理解。
1)检验个体效应的显著性。我们做固定效应模型时,F检验表明固定效应模型由于混合OLS模型。下面我们说明如何检验随机效应是否显著,命令为:xttest0。若P 值为0.0000,表明随机效应非常显著。
2)Hausman检验。具体步骤为:
step1:估计固定效应模型,存储估计结果;
step2:估计随机效应模型,存储估计结果;
step3:进行Hausman检验;
命令为:
xtreg GDP FDI EX IM, fe /*step1*/
eststore fe
xtreg GDP FDI EX IM, re /*step2*/
eststore re
hausman fe re/*step3*/
eststore 的作用在于把估计结果存储到名称为fe,re的临时性文件中。然后我们就可以根据Hausman检验的值进行模型的选择了。注意Hausman检验需要将fe放在re前面。
动态面板数据
对于面板数据,如果观测到被解释变量随时间而改变,则开启了动态面板对参数估计的可能性。动态面板模型设定了一个个体的被解释变量部分取决于前一期的值。当被解释变量的滞后一期或者多期出现在解释变量中。
对于短面板数据来说,需要研究短面板的固定效应模型估计,使用一阶差分消除固定效应。通过解释变量的适当滞后期作为工具变量对一阶差分模型中的参数进行IV估计可以得到一致估计量。但是Stata有一些固定的命令,可以直接进行动态面板估计。如:xtabond、xtdpdsys、xtdpd。以上这些命令使得模型更加容易估计,同时也提供了相关的一些检验。
推荐阅读:
Stata有个命令xtabond2,作者是:David Roodman,写过abar\newey2\ivvif\collapse2等。xtabond2的详细说明,还有专门介绍的PPT:repec.org/nasug2006/How2Do_xtabond2.ppt
来源:计量经济学服务中心综合整理
点击查看往期汇编
科研数据:
001 中国高速铁路线路&城市高铁开通数据002 地级市面板数据1990-2019003 上市公司数据集-慈善、股权、研发、审计、高管004 地级市高新技术企业统计情况2000-2019005 碳交易、碳排放(分行业、国家、省、市、县)006 2008-2018中国上市公司政治关联原始数据007 1936-2018年全国县级以上干部数据008 地级市市长市委书记数据库009 上市公司2006-2018年资产负债收益010 各县接收上山下乡知青数量
011 832国家级贫困县摘帽数据
学习资料:
计量统计:7种主流数据分析软件及经典教材推荐Stata数据清洗方法回归结果不显著可采取方法与思路面板数据汇总实证模型三步走:数据、模型、结果检验调节变量、中介变量、控制变量七种经典回归方法六种定量方法解决内生性问题(stata代码)Stata双重差分操作流程及代码交互项与异质性分析面板交互固定效应模型详解5种安慰剂检验方法详解DIDM:多期多个体倍分法案例及代码
中介效应检验程序、操作应用政策评估反事实框架及匹配方法开展政策效应评估传统PSM-DID模型改进与应用广义DID超强的政策评估工具中介效应分析的四种方式、原则、方法和应用Stata17中DID、DDD方法及使用策略DID的平行趋势检验步骤和程序
文本相似度计算及政策量化分析政策效应评估的四种主流方法详解
科研论文:经管类CSSCI南大核心来源期刊投稿方式综合社科高校学报CSSCI南大核心来源期刊投稿方式因果推断——现代统计的思想飞跃2020年中国经济学研究热点分析空间计量经济学文献综述陆铭的13个实证研究锦囊碳达峰和碳中和管理研究:进展与综述国内几篇A刊的发表经验陈强:计量经济学实证论文写作全解析刘修岩:城市经济学模型与实证方法进展与趋势刘俏:”碳中和“给经济学提出那些新问题洪永淼:大数据革命和中国经济学研究范式博士如何接受完整、全面的科研训练顶级经济学期刊青睐何种计量方法管理世界投稿经验:如何回应审稿人意见基于195篇实证论文发现期刊编辑的喜好CSSCI期刊主编:论文写作用词八条建议论文参考文献怎么引用才能通过查重给博士生论文投稿实用建议常任轨教职经济学学术刊物目录
洪永淼等:中国经济科学的研究现状与发展趋