查看原文
其他

北师大版八下数学 2.1《不等关系​》 知识点精讲

全册精讲+→ 班班通教学系统 2022-04-10

 扫码查看下载

全部资源



 1.1 《等腰三角形》 知识精讲

1.2 《 直角三角形》 知识精讲

 1.3 《线段的垂直平分线》


知识点、概念总结

1.不等式:用符号“<”,“>”,“≤”,“≥”表示大小关系的式子叫做不等式。

2.不等式分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号“>”,“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”,“≤”连接的不等式称为非严格不等式,或称广义不等式。

3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

5.不等式解集的表示方法:

(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3

(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

6.解不等式可遵循的一些同解原理

(1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

(2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)

(3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。

7.不等式的性质:

(1)如果x>y,那么yy;(对称性)

(2)如果x>y,y>z;那么x>z;(传递性)

(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)

(7)如果x>y>0,m>n>0,那么xm>yn

(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)

8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

9.解一元一次不等式的一般顺序:

(1)去分母 (运用不等式性质2、3)

(2)去括号

(3)移项 (运用不等式性质1)

(4)合并同类项

(5)将未知数的系数化为1 (运用不等式性质2、3)

(6)有些时候需要在数轴上表示不等式的解集

10. 一元一次不等式与一次函数的综合运用:

一般先求出函数表达式,再化简不等式求解。

11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

了一个一元一次不等式组。

12.解一元一次不等式组的步骤:

(1) 求出每个不等式的解集;

(2) 求出每个不等式的解集的公共部分;(一般利用数轴)

(3) 用代数符号语言来表示公共部分。(也可以说成是下结论)

13.解不等式的诀窍

(1)大于大于取大的(大大大);

例如:X>-1,X>2 ,不等式组的解集是X>2

(2)小于小于取小的(小小小);

例如:X<-4,X<-6,不等式组的解集是X<-6

(3)大于小于交叉取中间;

(4)无公共部分分开无解了;

14.解不等式组的口诀

(1)同大取大

例如,x>2,x>3 ,不等式组的解集是X>3

(2)同小取小

例如,x<2,x<3 ,不等式组的解集是X<2

(3)大小小大中间找

例如,x<2,x>1,不等式组的解集是1

(4)大大小小不用找

例如,x<2,x>3,不等式组无解

15.应用不等式组解决实际问题的步骤

(1)审清题意

(2)设未知数,根据所设未知数列出不等式组

(3)解不等式组

(4)由不等式组的解确立实际问题的解

(5)作答

16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。

导学案:

一、教学目标:


1、记住不等式的概念及不等号的分类。


2、能根据已知条件列出相应的不等式。


二、教学重点与难点


重点:不等式的概念及不等号的分类。


难点:根据已知条件列出相应的不等式


三、教学方法:


讲练结合法   多媒体演示法  探究法  尝试指导法


四、学情分析:


学生在七年级上册已学过一元一次方程,已经具备列一元一次方程解决实际问题的经验基础,为本节的学习已做好知识储备,估计学生应有能力经过自主探索和交流列出一元一次不等式,解决简单的实际问题,容易被学生接受和理解,从而也容易建立相应的数学模型来解题.


五、教学手段:多媒体


2.1 不等关系


一、复习旧知


1、学生自主阅读课本第37页,你能利用不等号分别表示出上述3个问题中的不等关系吗?与同学交流一下


2、做一做:


(1)     



(2)


二、探究新知


一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。(特别的,不等号还包含“≠”)


三、课堂展示


1、表达式     ①x2≥0;  ②2a+4b≠3;  ③5m+2n;  ④x+y<0;  ⑤3x+2=9   ⑥5x-3=2x+1;   ⑦a+b≥c;  ⑧1+1≠2中


表示不等式的是          。


2、8年级一班班长拿了56元钱去给班内20名优秀学生买奖品,奖品有两种:钢笔和笔记本。已知钢笔每支5元,笔记本每本3元,如果买x支钢笔,则列出关于x 的不等式是             。


四、课堂检测


用适当的符号表示下列关系:


① a 是非负数;


② 直角 三角形斜边 c 比它的两直角边 a、b 都长;

③ x 与 17 的和比它的5倍小;


④ 两数的平方和不 小于这两数积的2倍。


五、拓展提升


1、设a<b,用“<”或“>”填空:


a+1   b+1    a-3  b-3     -a    -b     -4a-5    -4a-3



2、用不等式表示:


a与b的和不是负数:           .x的2倍与3的差大于4:          .


8与y的2倍的和是负数:               


 

六、收获反思


教学设计:

一、知识与技能目标


学会运用不等式及不等式组对一些体育比赛的胜负进行分析,让学生感知生活离不开数学,学数学知识是更好地为解决实际问题服务.


二、过程与方法目标


给出具体案例让学生进行分析,激发学生对体育事业的关心和爱戴,对体育成绩的优劣与国民素质关系的理解,激发学生的爱国精神和主人翁意识.


三、情感态度与价值观目标


体育事业的发展与否从某方面来说,代表一个国家的强盛,代表一个国家在国际上的地位和知名度,体育健儿在赛场上为国争光,我们有学习他们的精神的必要性,同时还要能利用所学不等式组,对问题进行分析、求解.


一、创设情境,导入新课


据2004年11月9日北京青年报报道:CBA篮球赛推出新举措吸引球迷.取消升降级,划分南北区,增加球队和比赛场次,取消联赛冠名,设立“新闻发言人制度”和主客场获胜奖金制度,颁发“至尊钻戒”等……新赛季CBA联赛不同以往的看点一个又一个,这一切都是与NBA接轨的重大举措.2004-2005年赛季全国男子篮球甲A联赛的大幕11月14日于福建晋江开启,在国内各项赛事趋于平静的严冬早春,CBA的精彩纷呈将驱除篮球迷和广大体育爱好者心中的寂寞.


同学们,你们观看过篮球比赛吗?你自己会打篮球吗?你亲自参加过篮球比赛吗?


二、师生互动,课堂探究


(一)提出问题,引发讨论


根据篮球比赛规则,每一场篮球比赛结束后,得分高者为胜.如果得分相同,必须进行加时赛,使得分产生高低.某次篮球联赛中,火车头队与汽车头队要争一个出线权.他们与其它队的比赛结果都是5胜3负,究竟谁能出线,就要看火车头队和汽车头队的比赛结果,这场比赛谁赢了谁就出线.下面有这样一个问题,请同学讨论一下.


(二)导入知识,解释疑难


1.问题背景


某次篮球联赛中,火炬队与月亮队要争夺一个出线权,火炬队目前的战绩是17胜13负(其中有1场以4分之差负于月亮队),后面还要比赛6场(其中包括再与月亮队比赛1场);月亮队目前的战绩是15胜16负,后面还要比赛5场.


2.探究的问题


(1)为确保出线,火炬队在后面的比赛中至少要胜多少场?


(2)如果火炬队在后面对月亮队1场比赛中至少胜月亮队5分,那么它在后面的其他比赛中至少胜几场就一定能出线?


(3)如果月亮队在后面的比赛中3胜(包括胜火炬队1场)2负,那么火炬队在后面的比赛中至少要胜几场才能确保出线?


(4)如果火炬队在后面的比赛中2胜4负,未能出线,那么月亮队在后面的比赛中的战果如何?


3.探究过程与结果


(1)月亮队在后面的比赛中至多胜5场,所以整个比赛它至多胜15+5=20场.


设火炬队在后面的比赛中胜x场,为确保火炬队出线,需有17+x>20,则x>3,这样可知火炬队在后面的比赛中至少胜4场.


(2)如果火炬队在后面对月亮队1场比赛中至少胜月亮队5分,那么火炬队目前的战绩是18胜13负,后面还要比赛5场;月亮队目前的战绩为15胜17负,后面还要比赛4场;月亮队在后面的比赛中至多胜4场,所以整个比赛它至多胜15+4=19场.


设火炬队在后面的比赛中胜x场,为确保火炬队出线,需有18+x>19.则x>1.因此火炬队在后面的比赛中至少胜1场就一定能出线.


(3)如果月亮队在后面的比赛中3胜2负,则整个比赛它的战绩为18胜18负.由于月亮队在后面胜了火炬队,则火炬队目前的战绩为17胜14负,后面还要比赛5场,这样设火炬队在后面5场比赛中要胜x场才能确保出线,则x+17>18,解得x>1.


故火炬队在后面的比赛中至少要胜2场才能确保出线.


(4)如果火炬队在后面的比赛中2胜4负,则它整个比赛战绩为19胜17负,由于它未能出线,则月亮队出线.


设月亮队在后面的比赛中胜x场,为确保月亮队出线,需要x+15>19,得到x>4,因此当月亮队在后面5场比赛中战绩为全胜即5战5胜时,火炬队不能出线.


但当月亮队在后5场比赛中4胜1负时,火炬队也有可能不出线.即月亮队在后面的比赛中的战绩为4胜1负(不负于火炬队或在4分以内负于火炬队).


综上可得:如果火炬队在后面的比赛中2胜4负,未能出线,那么月亮队在后面的比赛中的战果有三种情况:①5战5胜;②4胜1负,但不负于火炬队;③4胜1负,有一场比赛负于火炬队,但要控制比分在4分以内.


4.想一想


根据上面问题情境,如果火炬队在后面的比赛中胜3场,那么什么情况下它一定能出线?


设月亮队在后面的比赛中胜了x场,则15+x<20,解得x<5,因此为确保火炬队出线,月亮队在后面5场比赛中只能胜1场或2场或3场或4场.


本章小节


例题讲解


探究活动(一)


一台装载机每小时可装载石料50吨.一堆石料的质量在1800吨至2200吨之间,那么这台装载机大约要用多长时间才能将这堆石料装完?


分析:装载机每小时可装50吨,而石料的质量多于1800吨而少于2200吨,则装载的时间在 到 之间,故可设x小时才能把石料装完,则


解得36


即装载石料的时间在36~44小时之间.


探究活动(二)


大、小盒子共装球99个,每个大盒装12,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?


分析:问题中有两个未知量,只有一个等量关系,另外还有一个附加条件:


设大、小盒分别有x个、y个,根据题意得:


由①知y为奇数,且x= =8- ③


∵x为自然数 ∴ 为整数,通过试验可得当y=3时,x=7,但x+y=10与x+y>10矛盾,故舍去,当y=15时,x=2,即


图文解析:


名师精讲视频


 扫码查看






图文来自网络,版权归原作者,如有不妥,告知即删

点击阅读原文下载全册PPT课件动画教案习题整套资料

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存