北师大版八下数学 1.1 《等腰三角形》 知识点精讲
扫码查看下载 全部资源 |
知识点讲解
1、 等腰三角形的性质:
(1) 等腰三角形的两个底角相等(简称“等边对等角”)。
数学符号表达:因为AB=AC
所以∠B=∠C(等边对等角)
(2) 等腰三角形顶角平分线、底边上的中线、底边上的高互相重合(简称“等腰三角形的三线合一”)。
数学符号表达式:1..∵AB=AC,BD=DC=1/2BC
∴AD⊥BD,AD平分∠BAC
2.∵AB=AC,AD⊥BC
∴BD=DC=1/2BC,AD平分∠BAC
3.∵AB=AC,AD平分∠BAC
∴AD⊥BD,BD=DC=1/2BC
(3) 等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线。
2、 等腰三角形的判定:
方法一:利用定义判定平行,直接通过全等三角形或其他办法证明AB=AC
方法二:判定方法:一个三角形的两个内角相等,那么这两个角所对的边也相等。(简称“等角对等边”)
通常证明两个内角相等的办法:角的和差计算、
全等三角形对应角相等、
平行线的性质。
3、 基本图形(未完待续,下期继续更新)
(1) 图例说明:
一个三角形的一个外角的平分线平行于三角形的一边,能通过说理得到这个三角形是等腰三角形。
反之,一个等腰三角形顶角的平分线一定平行于这个等腰三角形的底边。
顶角的外角等于底角的两倍。
(2) 图例说明:
AD平行于BC,BD是∠ABC的平分线,可通过说理得△ABD是等腰三角形.
反之,△ABD是等腰三角形,当∠ABD=∠DBC时,AD平行于BC.
基本图2运用:
知识点分析
名师精讲视频 扫码查看 | ||||
图文来自网络,版权归原作者,如有不妥,告知即删