北师大版九上数学2.4 用分解因式法求解一元二次方程 知识点精讲
扫码查看下载 全部资源 |
知识点总结
1、定义:将一元二次方程先分解因式,使方程化为两个次因式的乘积等于0的形式,再使这两个因式分别等于0,从而实现降次,这种解一元二次方程的方法叫因式分解法。(只适合一些较 为特殊的方程,系数和常数项较大的可以先考虑此法)。
2、原理:若a.b=0,则a=0或b=0,即是说,找到a=0和b=0的所有情况,就找到a. b=0的所有情况。
3、常用方法:提取公因式法、十字相乘法、公式法(平方差公式、完全平方公式)。
4、- -般步骤:①整理方程,使其右边为0;②将方程左边分解为两个一次因式相乘的积:③令每一个一次因式分别为0,得到两个一元一次方程;④分别解这两个元-次方程,它们的解就是原方程的解。
注意:用这种方法解方程时,一定要让方程的右边等于0,否则会出现错误。
知识归纳
1.分解因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:
①等式左边必须是多项式;
②分解因式的结果必须是以乘积的形式表示;
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;
④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
3.提公因式法基本步骤:
(1)找出公因式;
(2)提公因式并确定另一个因式:
①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;
②第二步提公因式并确定另一个因式,注意要确定另一个因式。
③提完公因式后,另一因式的项数与原多项式的项数相同。
几个个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守。
要变号,变形看正负。
例如:(注:x^2表示x的2次方)
-am+bm+cm=-m(a-b-c);
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
注意:把2a^2;+1/2变成2(a^2;+1/4)不叫提公因式
课后习题
1. 方程(x+3)(x-3)=0的根的情况是( )
A、无实数根
B、有两个不相等的实数根
C、两根互为倒数
D、两根互为相反数
2. 用换元法解方程(x2+x)2+(x2+x)=6时,如果设x2+x=y,原方程可变形为( )
A、y2+y-6=0
B、y2-y -6=0
C、y2-y+6=0
D、y2+y+6=0
3. 下列一元二次方程最适合用分解因式法来解的是( )
A、(x+1)(x-3)=2
B、2(x-2)2=x2-4
C、x2+3x-1=0
D、 5(2-x)2=3
习题精析
用因式分解法解一元二次方程
A. | B. |
C. | D. |
答案
D
解析
根据题意,可将方程化为x(x-1)+2(x-1)=0,提公因式(x-1),有(x-1)(x+2)=0.
试题分析:因式分解的一般步骤是:第一,看能不能用提公因式法;第二,公式法,平方差公式和完全平方公式;第三步,对于二次三项式,看能不能用十字相乘法.
教学设计
一、教学目标
【知识与技能】
掌握应用因式分解的方法,会正确求一元二次方程的解。
【过程与方法】
通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。
【情感态度价值观】
通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。
二、教学重难点
【教学重点】
运用因式分解法求解一元二次方程。
【教学难点】
发现与理解分解因式的方法。
三、教学过程
(一)导入新课
复习回顾:和学生一起回忆平方差、完全平方公式,以及因式分解的常用方法。
(二)探究新知
问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?
学生小组讨论,探究后,展示三种做法。
问题:小颖用的什么法?——公式法
小明的解法对吗?为什么?——违背了等式的性质,x可能是零。
小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。
问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]
师引导学生得出结论:
如果a·b=0,那么a=0或b=0
(如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)
“或”有下列三层含义
①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0
问题3:
(1)什么样的一元二次方程可以用因式分解法来解?
(2)用因式分解法解一元二次方程,其关键是什么?
(3)用因式分解法解一元二次方程的理论依据是什么?
(4)用因式分解法解一元二方程,必须要先化成一般形式吗?
因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。
老师提示:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”
(三)巩固提高
1.用分解因式法解下列方程吗?
总结:右化零,左分解,两因式,各求解。
(四)小结作业
用因式分解法求解一元二次方程的步骤:
1.方程化为一般形式;
2.方程左边因式分解;
3.至少一个一次因式等于零得到两个一元一次方程;
4.两个一元一次方程的解就是原方程的解。
四、板书设计
图文导学
看高端教学讲课视频请扫码
图文来自网络,版权归原作者,如有不妥,告知即删