重症超声在重症相关操作中应用专家共识
重症超声在重症相关操作中应用专家共识
重症医学的起源追溯到1952年丹麦暴发脊髓灰质炎[1],当时大量患者需要呼吸支持,但是对重症患者如何治疗尚无足够认识。1959年美国Weil医生开始创建休克治疗病房[2]。1929年德国Forssmann-Falck[3]成为放置中心静脉导管(PICC)第一人,开创了中心静脉导管放置的先河,奠定了心导管研究基础。至1953年Sedingger技术[4]使得床旁进行中心静脉置管成为可能。由于重症医学的初始阶段,对重症患者的病理生理尚不了解,故于1962年提出了监测中心静脉压的意义[5],临床上开始大量应用中心静脉导管,主要用于静脉营养和血液透析[6]。1970年出现了Swan-Ganz导管,其在重症患者的应用使临床医生了解了重症患者病理生理及血流动力学特点[7]。由于各种有创导管的应用,使得临床医生对重症患者的病理生理有所理解,重症相关操作不但是诊断的需要,且是治疗的需要,尤其是器官功能替代治疗得以实施[8, 9]。各种监测需要有创操作,操作不断成熟,促进了对重症的认识及重症医学的发展,但各种操作带来的相关损伤不容忽视,重症超声作为可视化工具应用到重症各种操作,可减少常规操作带来的不必要的并发症。
重症医学的发展伴随着重症相关操作的改变,重症相关操作促进重症医学的发展。重症相关操作带来的医源性损伤不容忽视,减少重症相关操作导致的医源性损伤是每一位临床医护人员面对和关注的问题。随着重症超声在重症诊治中的作用被日益认知,越来越被ICU工作者广泛接受和应用。重症医学专业医疗和护理在实施各种操作过程中开始应用超声来解决面临的各种问题。为了促进重症超声学术发展与体系建设,以及质量控制的需求,重症领域相关专家根据多年来的应用和推广经验,从基本理念到实施规范,制定了本共识。2022年组织全国各地的20余名重症医学护理专家组成撰写组,形成初步共识条目、解释与相关证据文献。2022年10月召开网络会议集中讨论,记录每位发言者对共识的意见和建议,条目修正后,所有参会专家针对每个共识条目再次进行两轮讨论,根据会议专家达成共识条目及其内容描述的要求,初步形成推荐意见53条。2023年6月将形成的初步条目通过问卷形式;发送给重症超声研究组(CCUSG)(共识评估组34名专家)进行投票。投票选项设同意、不同意、不确定;若同意,该选项给予0~9分评估;不同意和不确定不予评估。第一轮投票≥90%的46条予以采用,同意率在80%~90%的7条予以修改后第二轮投票,同意率≤80%的不予采用。第二轮投票中7条同意率未达到90%的4条亦不予采用,最终形成49条。根据共识条目的理论依据、科学性、创新性、可行性及专家权重进行综合评分,同时评估过程参考并遵循推荐意见分级评估、制定及评价(GRADE)推荐原则,综合评分为0~9分,确定各条目的推荐强度,0~3分为不推荐,4~6分为弱推荐,7~9分为推荐,评估过程进行两轮,结合最新的临床医学证据和重症医学发展前沿,专家组再次对共识条目进行审阅修改。随后撰写组根据会议意见,再次查阅及增补最新文献,于2023年8月初形成最终稿。
一、重症与重症操作的关系
推荐意见1:重症相关操作带来的医源性损伤不容忽视(推荐强度:8.29)
各种操作给重症带来了诊断和治疗的方法,同时亦带来医源性损伤,以中心静脉置管为例,总并发症发生率为15%,机械相关并发症发生率为5%~19%,感染相关并发症发生率为5%~26%,血栓相关并发症发生率为2%~26%[10]。由于锁骨下静脉穿刺会出现严重并发症,使得其应用受到限制[11]。其他重症相关操作同样亦会出现操作并发症[12, 13, 14, 15],并发症与操作局部的解剖和相邻组织器官密切相关。产生并发症的主要原因是操作部位无法可视化,并发症的出现对患者和操作者均会产生影响。另一个不能忽视的问题是操作标准,既往标准主要看操作是否成功,不成功即会尝试在不同角度、深度进行操作,无疑加重了操作部位的局部损伤,操作相关并发症亦会增加,导致患者住院时间延长,医疗费用增加,甚至导致患者死亡。
推荐意见2:ICU相关操作有不同的学习曲线,需要结合学习曲线灵活应用(推荐强度:8.37)
学习曲线是对一项任务熟练程度与其经验次数间的图形[16]。重症相关操作依赖操作者,故每一项操作的学习曲线并不相同[17, 18, 19, 20, 21, 22],随着学习次数的增加,学习效果亦会增加,如中心静脉置管需达到50例的穿刺经验才能熟练掌握[23, 24]。重症超声引导的各种操作的难易程度、相关并发症不同,应结合科室人员及患者实际情况进行,对操作数量比较多的操作,建议每个操作者均应掌握且要达到一定次数,而对操作较少的操作,建议科室先定向1~2名医生掌握此类操作,熟练后再逐渐由其他无操作经验的人员完成,对比较少的操作是一种优化的选择。
二、重症超声操作相关基础
推荐意见3:利用信号和图像处理、穿刺针改良、超声图像优化、运动分析等,增强穿刺针尖超声可视化,提高穿刺的有效性和安全性(推荐强度:8.21)
穿刺过程中穿刺针尖的监测是操作的重点,穿刺针尖脱离“视线”继续操作是产生并发症的主要原因,目前在二维超声引导过程中,保持穿刺针和超声束成90°角,穿刺针成像最好。亦有一些新技术,如三维技术构建三维图像。SonixGPS是一种用于超声引导穿刺针干预的电磁针跟踪系统,当前和预测的针尖位置均实时显示在超声屏幕上,便于穿刺针对准和引导目标[25]。先进的二维成像是使超声波束尽可能垂直于穿刺针,穿刺针在超声图像显示的清晰度会更理想。智能穿刺增强技术,超声探头先从不同的角度发射超声波,显示穿刺针的图像,再通过系统推测出穿刺针的角度,以实现根据穿刺针的角度变换自动调节偏转超声波束[26]。除了上述技术外,目前亦有穿刺架应用、红外导航技术、磁导航技术等先进技术。
推荐意见4:操作过程中监测穿刺针与周围组织的相互关系是操作的重点(推荐强度:7.97)
通过超声引导下穿刺,临床医生多了一双“眼睛”,可以实时监测穿刺针进入的过程,使得操作变得更安全、简单。以中心静脉为例,以往临床实施中心静脉导管置入通常以 Seldinger 技术[4]为基础,穿刺则以体表定位法为主,虽然该手段具有一定穿刺效果,但由于重症患者静脉血管状态较差、穿刺难度大,进而降低穿刺成功率,从而反复操作,甚至可能中途更换操作者,并易引发多种血管相关并发症及发生院内感染[27]。但是利用超声技术可视下操作,能够在穿刺过程时有效避免刺伤其他血管和神经等。一项超声引导和体表定位法穿刺颈内静脉的Meta分析显示[28],在行中心静脉置管的过程中,应用超声技术监测穿刺针进行操作,相比传统的体表定位法更能减少操作过程出现的并发症。大量文献支持,超声引导下中心静脉置管与体表定位法比,动态监测穿刺针进针过程,可提高第一针穿刺成功率和总穿刺成功率,同时可降低气胸、误伤动脉等并发症发生率[28, 29, 30, 31, 32, 33]。有研究认为,熟练掌握超声操作过程中穿刺针的位置,对困难外周静脉置管可提高穿刺成功率[34, 35]。大量研究指出,超声引导下动脉穿刺可提高成功率,减少操作时间和操作相关并发症[36, 37, 38]。利用盲法行胸腔穿刺术,气胸发生率高达11%,超声引导下胸腔穿刺明显减少了并发症的发生[39, 40]。超声可视下操作的优势显而易见,操作过程中可提高穿刺成功率,且可最大限度减少操作相关并发症,使重症患者更安全。
三、中心静脉置管
推荐意见5:体表定位置管法是基于中心静脉解剖正常、静脉通畅的假设,是出现并发症的主要原因(推荐强度:7.97)
体表定位法是通过相对的解剖位置或体表位置确定穿刺点进行中心静脉穿刺置管,这种方法临床应用最多,这种方法是基于两个假设:(1)动脉和静脉的解剖结构正常;(2)预穿中心静脉通畅。然而实际的情况是动静脉的解剖位置会有变化[41, 42, 43, 44, 45],同时预穿中心静脉由于静脉血栓[45]可能是完全阻塞或部分阻塞。如果解剖位置正常同时血管通畅,血管的状态亦会对操作产生影响,血容量不足时预穿的血管在穿刺时很容易血管前壁贴后壁,在外力的作用下前壁和后壁先后同时被穿刺。这种情况下同一部位反复穿刺导致血管损伤。上述情况如果采用体表定位法进行操作,穿刺前血管的情况操作者并不知晓,首次操作失败的情况下会在不同角度、深度进行操作,故而带有一定的盲目性,同时亦使穿刺并发症增加。有资料表明,随着穿刺次数增加,并发症亦相应增加[46]。
推荐意见6:中心静脉置管前的超声评估,是决定是否进行操作的关键(推荐强度:8.15)
预穿刺的中心静脉,其解剖结构可能出现变异、不通畅、血管内的容量状态不足,超声评估穿刺部位可对其部位了如指掌,解剖结构是否变异,静脉是否通畅,血管容量状态是否不佳等,是决定穿刺的非常关键一步,亦是为应用静态评估法穿刺抑或实时引导穿刺提供方案[47, 48]。
推荐意见7:实时超声引导穿刺是重症医学科常规操作,应严格执行超声引导下中心静脉置管六步法(推荐强度:8.06)
已有大量研究显示,超声引导下中心静脉置管的优势[48, 49, 50],超声引导中心静脉穿刺分静态法和实时引导法,《中国重症超声专家共识》提出[51],中心静脉置管静态评估是常规操作,对静态评估认为穿刺有难度者可进行实时引导下穿刺。随着认识的深入及设备的普及,需要中心静脉置管者,建议有条件的情况下应考虑超声实时引导穿刺置管。传统的操作是以是否穿刺成功为目标,不太考虑穿刺次数,而穿刺次数与并发症明确相关[46]。故提出“一针、一眼、一导管”的重症治疗标准[52](穿刺针进入皮肤一个针眼,一针进入血管,置入一根导管),如果每一次操作均能达到此标准,操作相关并发症会降到最低,同时操作者亦会提高操作水平。推荐中心静脉置管操作均按照国际推荐的六步法[47]进行:(1)判断动静脉的位置关系;(2)判断静脉是否通畅;(3)采用超声平面外或平面内法进行穿刺;(4)超声证实穿刺针在血管内;(5)超声证实穿刺导丝在血管内;(6)超声证实导管在血管内。六步法的每一步均需要在超声下完成,对采用传统体表定位法操作者而言,六步法可能比较繁琐,但对于群体操作而言,六步法必须做到,以保障患者的安全。应用超声引导需要练习实践才能更好地应用,有些技巧需要学习才能掌握[53]。
推荐意见8:超声引导的中心静脉置管可提高第一针置管成功率,减少穿刺时间(推荐强度:8.17)
体表定位法一般是以穿刺成功不出现并发症为标准,无法要求一针穿刺成功,如第一针操作不成功即会尝试不同角度、深度、更换有经验的操作者。文献报道,随着穿刺次数增多,并发症亦随之增加[46]。超声能够明确中心静脉位置及其毗邻关系,是穿刺成功的重要一步,如果能正确实时穿刺引导,可提高穿刺成功率,减少操作相关并发症。有证据表明,超声引导下的中心静脉置管可提高第一针成功率,减少穿刺时间[30,54, 55]。
四、动脉置管
推荐意见9:动脉穿刺第一针成功更重要,超声引导下动脉置管可提高首次穿刺成功率,推荐将超声引导作为ICU内动脉导管放置的常规操作(推荐强度:8)
临床上动脉置管是通过触摸动脉搏动,依靠经验实施盲穿完成操作,如果第一次穿刺失败即会出现局部血肿、血栓等常见并发症。超声引导下动脉穿刺能实时显示动脉的位置,便于操作者直视下进行穿刺,是一项高效、简便、安全的穿刺方法[56]。Meta分析表明,超声引导下桡动脉置管可显著提高第一针穿刺的成功率[57]。在ICU休克患者的抢救中,由于患者动脉血压低,脉搏无法触及,经常难以通过盲法一次穿刺置管成功,延误了血流动力学监测和治疗不及时,影响患者的抢救[58, 59]。超声引导下动脉穿刺置管可以动态观察动脉血管,有效克服盲穿置管的局限性[60];并且操作简便,首次成功率高,相应的并发症率低,节省了操作时间[28]。多项针对超声引导的桡动脉置管的Meta分析显示,超声引导提高了首次穿刺成功率,减少桡动脉穿刺次数,降低血肿的发生率,并可缩短桡动脉置管时间[61, 62]。故推荐将超声引导作为ICU内动脉导管放置的常规操作。
五、胸腔穿刺
推荐意见10:胸腔积液穿刺前必须通过重症超声了解肋间血管位置,避免穿刺损伤血管(推荐强度:7.91)
了解肋间动脉的解剖结构是胸腔穿刺部位选择的关键,一般来讲肋间血管和神经组成的神经血管束从肋脊交界开始走行于肋下,由于肋间动脉的走行在不同肋间、不同的位置与肋骨下缘距离并不一样,随着年龄的增加,肋间动脉的迂曲度增加,此外,部分肋间动脉存在解剖结构变异,增加了传统的解剖标志定位穿刺损伤肋间动脉的风险,肋间动脉一旦损伤,常导致预后不良[63, 64, 65, 66, 67, 68]。行胸腔穿刺前必须使用重症超声了解肋间动脉走行,及时发现肋间动脉变异,避免穿刺路径穿过肋间血管,尽量使穿刺路径在安全区域内穿行。使用线阵探头配合彩色多普勒可提高对肋间血管的识别,如在预设的穿刺路径未探及血管,提示该穿刺点相对安全,可降低损伤肋间血管的风险[69]。
推荐意见11:胸腔穿刺前应通过重症超声了解膈肌位置及膈肌运动度,避免呼吸驱动过强时穿刺及误伤膈肌(推荐强度:8)
胸腔积液位于膈上胸膜腔内,穿刺时须使用重症超声明确膈肌位置,确定积液位于膈上,以区别于腹腔积液或胃潴留时的胃液,同时选择穿刺点应位于膈肌以上,避免穿刺时损伤膈肌及膈下腹腔脏器[70]。此外,膈肌位置并非固定不动,随着呼吸上下运动,重症患者常因应激、呼吸机设置不当等出现呼吸驱动增强,导致膈肌运动度大。如胸腔积液的穿刺点靠近膈肌,当膈肌运动过大时,穿刺过程可能导致误伤膈肌及膈下器官,因此呼吸驱动过强或膈肌运动度过大时,应避免进行胸腔积液穿刺,须在有效控制呼吸驱动降低膈肌运动度后进行穿刺 [71, 72]。
推荐意见12:重症超声引导下进行胸腔积液穿刺,有助于把握进针方向、深度,避免穿刺针损伤胸腔内脏器,减少穿刺并发症(推荐强度:8.36)
胸腔积液确定穿刺点后,穿刺过程需把握穿刺针的进针方向和进针深度,进针方向通常朝向积液内径最大的方向。传统方法是通过查体定位或超声等影像方式确定标记点及方向,该方法并不可靠,且可重复性差,干抽的概率增大[73, 74, 75]。有研究显示,即使经验丰富的医生穿刺,进针方向相同,在无可视化指导下均会产生方向偏差,而重症超声实时可视化指导的进针方式更有利于把握进针方向,及时调整进针方向偏差,降低传统穿刺方式由于进针偏差导致的并发症[76]。穿刺过程中针尖在胸腔尽可能靠近壁层胸膜的位置是穿刺的安全保证。一般认为,脏层胸膜与壁层胸膜之间的距离<10 mm的穿刺风险增加,需慎重穿刺[77]。使用重症超声直视下指导穿刺尤为重要,更有利于把握进针的深度,确定针尖位置,避免针尖触及胸腔内脏器产生穿刺相关并发症[78, 79]。
推荐意见13:重症超声有助于动态监测发现胸腔穿刺、引流相关的并发症(推荐强度:8.29)
胸腔积液在超声下多显示为无回声或低回声,胸腔穿刺引流后,随着积液量减少,重症超声动态监测可见无回声或低回声区域缩小,肺部受压迫逐渐缓解,肺部可重新复张,在呼吸运动下,随着肺部充气量增加,气水比例改变,肺部重症超声征象可发生相应的改变,可由组织样变转变为B线、A线,重现胸膜滑动征。这种动态改变的重症超声征象,有助于监测肺复张的效果[80]。
胸腔积液穿刺后须行重症超声检查,有助于及时发现穿刺和引流相关并发症[81]。当穿刺损伤肺脏层胸膜或气体沿穿刺路径进入胸腔,可产生气胸的相关征象(如A线,胸膜滑动消失,平行气流层征,出现肺点)。当损伤肺部产生张力性气胸时,重症超声可见心脏受压等循环衰竭征象。重症超声实时指引的胸腔积液穿刺,明显减少了相邻脏器的损伤,如已行胸腔积液置管,但出现引流不畅或可凝性血性积液,借助重症超声沿穿刺路径探寻,有助于及时发现损伤脏器产生的并发症或导管异位[82]。
推荐意见14:重症超声有助于发现气胸,确定气胸范围(推荐强度:8.12)
肺部超声检查诊断气胸的敏感度、准确性及阴性预测值远高于胸部X线检查,与CT检查接近[83]。肺部超声诊断气胸时需认清胸膜滑动征、肺搏动征、B线、实变和肺点等几种征象。当肺部超声发现胸膜滑动征消失,出现平流层征,并找到肺点时可诊断气胸[84, 85]。虽然存在上述征象并找到肺点诊断气胸的特异度几乎达到100%,但大多数情况下,由于肺压缩的程度不同,且重症患者的气胸有时为局灶性气胸,确定肺点一定困难。因此,当临床怀疑存在气胸时,应对逐个肋间的肺组织进行检查,如发现胸膜滑动征、肺搏动征、B线、实变、胸腔积液等征象,首先能除外检查部位是否存在气胸[86, 87]。肺点的位置可以用来半定量评估气胸范围的大小。检查者可通过临近肋间隙寻找肺点,评估气胸范围。一般来讲,若是小范围气胸,肺点会在前胸部,若是大范围气胸,肺点会往外侧移动[88]。
推荐意见15:重症超声不能完全替代其他影像学检查,仅在紧急状态下指导气胸穿刺(推荐强度:7.94)
肺点可以在压缩的肺和气胸交界区域找到,压缩的肺随着呼吸运动使脏层和壁层胸膜的接触点产生移动,形成了平流层征和沙滩征的交界点,即肺点。虽然找到肺点诊断气胸的特异度几乎达到100%,但大多数情况下,由于肺压缩的程度不同,且重症患者的气胸有时为局灶性气胸,确定肺点存在一定困难[89, 90]。若气胸范围非常大,肺组织被全部压缩至肺门,肺无任何移动,即无法找到肺点[91, 92, 93]。因此重症超声不能完全替代其他影像学检查,当无法明确气胸存在时,应联合其他影像学检查如X线胸片、CT等进一步明确诊断。除非高度怀疑患者张力性气胸需要紧急处理,经过诊断性穿刺明确后,才可在紧急状态下指导气胸穿刺。
六、腹腔穿刺
推荐意见16:超声可识别腹壁血管,可降低腹腔穿刺出血风险(推荐强度:8.06)
腹壁血肿的发生率为1%~2%,合并出血的患者病死率高、住院时间长,医疗费用增加[94]。避免腹壁出血的关键在于识别门静脉高压形成的侧支及腹壁下动脉[95]。扩张的腹壁静脉因肉眼可见,容易避开。腹壁下动脉位于腹中线两侧5~6 cm处[96],与两条静脉伴行,但解剖变异较大,特别是肥胖患者[97],需要超声确认动脉位置,避免穿刺损伤。选用超声高频线阵探头(6~12 MHz)完整显示腹壁,识别腹壁下动脉的二维结构,再用彩色多普勒及脉冲多普勒超声检查进一步确认[98]。亦可从腹股沟韧带中点向头侧追踪腹壁下动脉,标记血管走向,避免穿刺损伤[99]。
推荐意见17:超声识别腹腔内脏器可减少腹腔穿刺损伤(推荐强度:8.44)
超声识别胃、肠、肝、脾、肾、膀胱等腹腔内器官,可避免损伤[100]。肠道是腹腔穿刺最易受损的器官,穿刺导致肠穿孔的发生率为0.8%[101],多个巨大肠袢,黏附于腹壁上的肠袢,均明显增加肠穿孔风险[102]。穿刺前识别肠管是避免损伤的关键。横结肠和乙状结肠属腹膜内位器官,含气量多时,可自由漂浮于腹水前方;升结肠和降结肠属腹膜间位器官,相对固定于腹膜后。由于肠系膜脂肪密度低,小肠常排列在垂直漂浮的肠系膜两侧[103]。肠腔内气体含量少时,超声可见特征性的结肠袋和环状小肠皱襞及节段运动。控制穿刺针进针深度小于皮肤表面至最浅肠袢的距离,可明显降低肠道损伤风险[99]。
值得注意的是,腹水和腹内器官(特别是肠管)在体位改变或深呼吸时,容易发生移位[100]。若患者改变体位或定位与穿刺时间间隔过长,需重新进行超声评估,以保证穿刺的安全性。
七、腰椎穿刺
推荐意见18:超声引导腰椎穿刺可优化穿刺间隙,缩短穿刺过程,尤对特定患者,如肥胖、超重、婴幼儿等更为明显(推荐强度:7.85)
影像引导腰椎穿刺是一种常用的技术,传统使用透视引导完成[104]。而超声与透视比具有特定优势,直接可视鞘囊、髓质圆锥、神经根和未完全骨化的结构[105]。超声引导腰椎穿刺术,能直观显示棘突间隙宽度、黄韧带深度和脊柱骨异常等,确定最宽间隙,引导选择更佳的穿刺位置及测量穿刺径路。有研究通过超声测量腰椎发现,坐位屈颈,可增加棘突间隙;坐位或侧卧位髋关节屈曲,可增加棘突间隙;侧卧位屈颈,棘突间隙未见显著改变;提示,超声引导下可通过优化穿刺体位创造更好的穿刺条件[106]。一项Meta分析显示,超声应用于腰椎穿刺,虽不增加穿刺成功率,但可减少尝试次数和创伤性穿刺操作次数[107, 108]。应用显示人群包括肥胖、超重(体重指数>30 kg/m2)、婴幼儿、孕妇、急诊患者、腰椎术后(内固定)者、脊柱畸形(侧弯畸形、融合畸形)者[109, 110, 111, 112, 113]。可见,超声引导腰椎穿刺在特定人群中显示潜在的获益。
推荐意见19:超声引导腰椎穿刺,通过骶骨、中线及椎间盘间隙定位和优化穿刺部位,识别黄韧带以选择穿刺针和穿刺深度(推荐强度:8.03)
超声引导腰椎穿刺常选择低频曲阵探头,对瘦小患者及超声初学者可选择能生成高分辨率图像的高频线阵探头。规范流程:(1)定位和优化穿刺间隙:首先确定骶骨,并通过向上滑动超声探头依次识别腰椎棘突;然后确定中线,将超声探头准确居中在每个棘突上,并做一个垂直于超声探头的标记,表示脊柱的中线;确定椎间盘水平:将超声探头置于腰3或腰4椎骨上,顺时穿刺针旋转90°,使超声波束在中线上纵向对齐。结合以上步骤沿脊柱中线滑动超声探头,以确定最宽的棘突间空间。(2)选择穿刺针和确定穿刺深度:首先识别黄韧带,表现为一条高回声水平线、位于椎板或关节突深处。充满液体的硬脑膜囊在黄韧带和后纵韧带之间呈无回声;测量皮肤-黄韧带距离,指导选择合适长度的穿刺针和测量穿刺深度。超声实时引导下能清楚地在穿刺针尖进入黄韧带时对其进行跟踪。将超声探头置于最宽的腰椎棘突间隙,朝向中线旋转45°,进入斜旁正中位观察。超声探头从上一椎骨的棘突至下一椎骨的椎板的平面内对齐,可清楚显示椎板、黄韧带、椎管和后纵韧带。将针头插入超声探头下方,穿刺针插入超声波束平面内。需注意,由于上一棘突的阴影,针尖在穿透黄韧带时通常无法继续实时引导,即便这样仍可提高穿刺效率,减少操作损伤,特别是对肥胖等困难穿刺患者尤为重要[114]。
八、超声引导下心包穿刺
推荐意见20:重症超声有助于心包积液的量与性状的评估,以及心包填塞的诊断(推荐强度:8.6)
心包填塞是一种危及生命的疾病,体征包括颈静脉怒张、心音低弱遥远、低血压和休克等。但如果仅依据体检和临床症状,很难准确评估心包状况。而重症超声在心包积液和心包填塞的评估中起着重要的作用。心包积液表现为心包两层之间的无回声间隙。重症超声可以早期检测到心包积液,同时可以评估积液的位置、量、性状及对心功能的影响。重症超声评估的顺序和重点:(1)区分全局性或局限性积液;(2)对积液进行量化;(3)描述液体形态;(4)分析对血流动力学影响[115]。急性发作时,少量的心包积液可引起心脏填塞,慢性发展可使心包的弹性纤维伸展,对血流动力学的影响反而较小。需要注意的是,出现局限性心包积液时,选择手术治疗而不是心包穿刺术。当出现心包填塞时,超声征象为收缩末期右心房塌陷、舒张早期右心室塌陷、心脏摆动征和下腔静脉扩张固定(下腔静脉内径>2.5 cm,吸气下腔静脉塌陷<50%)。右心房塌陷时长超过1/3个心动周期,对诊断心包填塞的敏感性较高。心包填塞是心包穿刺术的主要指征,占心包穿刺术的80%。根据欧洲心脏病学会心包疾病管理指南,心包填塞是心包穿刺术的Ⅰ级指征,大量(>20 mm)心包积液(Ⅱa类推荐)亦可考虑行心包穿刺术。根据重症超声征象行心包穿刺术引流的相对指征:(1)右心房和/或右心室在舒张期塌陷;(2)1个月内出现大量积液。当积液自行消退时,通常不进行心包穿刺术,或者可以使用侵入性较小的方法诊断和治疗积液的来源[116]。
推荐意见21:建议应用重症超声选择心包积液的穿刺部位(推荐强度:8.57)
传统的盲穿是一项危险的临床操作,可能导致严重并发症。对有经验的操作者,超声引导下的心包穿刺术是首选,重症超声可以确定积液最大且最易通过心包穿刺针进入的部位,测量胸壁至积液的距离以及从壁层心包至心外膜的距离,找到最佳穿刺点,以避免对肺、肝脏或其他脏器的损伤。一项心包穿刺并发症的临床研究显示,超声引导下心包穿刺成功率高(97%),严重并发症发生率低(1.2%)[117]。
在心包穿刺术中,有三种进针途径,胸骨旁入路、剑突下入路、心尖入路。
选择左胸骨旁入路穿刺时,将穿刺针进入胸骨附近,通常位于左侧第五、六肋间。该入路触发气胸的风险较高。
选择剑突下入路时,将穿刺针在剑突和左肋缘之间进入,指向左肩,与皮肤成15°~30°角。这一入路可避开冠状动脉、内乳动脉。该入路对胸膜、肝脏或胃的损伤与对膈膜和膈神经的刺激导致的心动过缓和休克的发生率、以及与操作相关的病死率较其他入路高。
心尖入路,需将穿刺针进入左乳头外的肋间隙。这种入路心尖很容易被刺穿,并引起室颤,紧急情况时不建议使用此方法。进针的正确标志应对应心包空间最靠近超声探头的区域,且积液最多;这个部位在心尖部比在肋下更常见。
入路选择需要考虑积液位置、患者体位和临床情况后决定[117, 118]。
九、超声引导的腹膜后穿刺
推荐意见22:腹膜后穿刺可在超声引导、内镜超声或CT引导下进行。床旁超声引导的腹膜后穿刺是CT引导下穿刺的有效补充(推荐强度:7.91)
超声引导下经皮、内镜超声下经胃或十二指肠或介入科在CT引导下腹膜后穿刺,均是进行微创腹膜后穿刺可选的方法,用于腹膜后病灶的诊断和引流。胰腺周围坏死或合并感染是目前临床最常见的需行腹膜后操作的疾病,相对于开放性清创手术,经皮或经内镜引流具有创伤小的优点,尤其对全身炎症反应重、难以耐受手术操作的患者,先行局部减压引流是可选的方案[119],一项微创方法和手术方法治疗急性坏死性胰腺炎的对比性研究中,88例经皮引流的急性坏死性胰腺炎患者中,35%的患者仅用经皮导管引流即可治愈,65%的患者需要在经皮引流后再行视频辅助腹膜后清创术(videoscopic assisted retroperitoneal debridemen,VARD)[120, 121],且在长期随访中发现,从微创引流减压开始的逐步递增的手术策略,能使合并胰腺坏死的患者远期发生切口疝更少,发生胰腺内分泌或者外分泌功能不全更少[122]。CT引导下腹膜后穿刺,对腹膜后病灶的定位更精准。但腹膜后感染的患者通常存在血流动力学不稳定、急性呼吸窘迫综合征等特殊情况,限制了患者的CT检查。而床旁重症超声具有可重复性、床旁操作等优势,更适合重症患者,是介入科治疗的有效补充。
十、体外膜肺氧合(ECMO)置管
十一、鼻肠管放置
推荐意见29:放置鼻肠管前建议使用重症超声评估胃窦面积和功能(推荐强度:8.06)
重症患者胃肠功能障碍主要包括胃窦运动障碍和胃排空延迟,此时经胃喂养可能导致患者出现胃食管反流造成吸入性肺炎。且经胃不耐受和高胃残余会使肠内喂养频繁中断,甚至停止造成喂养不足,显著延长住ICU时间、延长机械通气时间及出现感染等并发症[139]。因此,对高胃残余量、高误吸风险及经胃喂养无法获得充足营养支持的重症患者,建议放置鼻肠管行幽门后喂养[140]。超声胃窦单切面法测量胃窦横截面积(cross-sectional area,CSA)与胃容积存在良好相关性[141]。通过测定胃窦运动指数(motilite index,MI)可反映重症患者胃排空和胃动力情况[141, 142]。
由于胃肠动力障碍,放置过程中鼻肠管尖端不易通过幽门,为提高置管成功率,建议置管前禁食6~8 h[143],并予患者胃复安,增加胃收缩的幅度改善胃排空,同时放松幽门括约肌和十二指肠球部以促进胃蠕动[144]。当超声检测胃内容物过多、胃腔内存在强回声气体时,应先放置胃管行胃肠减压,尽量使胃排空后再拔除胃管,以增加置管成功率[145]。放置过程中患者右侧卧位,依靠重力使鼻肠管尖端更易通过幽门。胃窦距离体表较近,位置相对固定,超声检测胃窦评估胃内容积成功率明显高于胃底和胃体[146]。重症超声测量胃窦收缩幅度(ACA)对预测鼻肠管尖端成功通过幽门和Treitz韧带意义更大[142]。
推荐意见30:重症超声可以通过双轨征、食管充气征第一时间判断鼻肠管进入食管(推荐强度:8.09)
传统盲插置管方法依赖于操作者的经验,插管成功率较低,且可能出现相关并发症;其中营养管位置不当造成的并发症危害最大,包括置管时位置不当和置管后移位。若留置过程中误将营养管置入气管内,甚至穿破肺组织,可引起气胸、血胸、支气管胸膜瘘等恶性并发症[147];亦可能出现营养管盘曲在咽后壁、颅底骨折患者营养管误入颅内等其他并发症[148]。重症超声可实时监测食管、气管和营养管,确定放置位置。
食管毗邻气管和颈动脉,从超声可见由气道、食管和颈动脉构成的三角结构[149]。在此切面通过超声静态观察食管内双轨征来确定导管进入食管,但可能存在显示不清或先前胃管干扰问题。通过超声动态观察食管充气征方法,可第一时间定位营养管进入食管:(1)将营养管经鼻插入20~25 cm深度,超声探头置于三角结构处即食管横切面观察。(2)向营养管内快速注射10 ml气体,如果观察到随气体注入食管内,出现类似支气管充气征表现的强回声影时,提示营养管已进入食管[150]。(3)将超声探头旋转90°行纵切面检查,向营养管内注射10 ml气体后,可见双轨征中间有强回声通过,同样提示营养管已进入食管[150]。
推荐意见31:应用重症超声可通过双轨征、云雾征等判断鼻肠管已通过幽门(推荐强度:8.06)
鼻肠管置入,适用于胃排空障碍的患者,可减少反流,降低误吸发生率,增加患者对肠内营养的耐受性[151]。应用重症超声筛查双轨征直接判断鼻肠管位置:(1)将超声凸阵探头置于患者剑突下,纵切胃窦,幽门管内出现双轨征时提示鼻肠管通过幽门。(2)可通过超声检查在胆囊后下方、胰头上方、胆总管、门静脉及下腔静脉的前方定位十二指肠球部。(3)通过超声检查在腹主动脉、下腔静脉、肠系膜上动脉、肠系膜上静脉定位十二指肠水平部。若出现双轨征,提示营养管已通过十二指肠水平段[152]。留置鼻肠管过程中,超声探头扫查患者胃窦处出现云雾征并向右侧扩散,提示营养管到达胃窦;超声探头扫查患者幽门处出现云雾征并向左侧扩散,提示营养管尖端通过幽门。超声联合胃窦渐进式注水法,有助于引导空肠营养管尖端位置和胃窦的相对位置变化,逐步引导导管进入幽门和十二指肠[150]。
十二、气管插管
推荐意见32:重症超声可通过动态、静态观察气管、食管和肺的超声征象,判断气管插管是否进入气道(推荐强度:7.82)
由于气管内为气体,超声有时不易显示气管内导管的影像,建议通过动态、静态法第一时间判断气管插管是否进入气管。
插管过程中使用短轴切面实时观察气管及毗邻食管内运动图像的变化,协助判断插管是否进入气管[153]。插管后通过观察气管和食管内的超声征象,并结合旋转法可再次确认插管的位置[154]。肺部超声通过观察双侧肺的胸膜滑动征、窗帘征及膈肌位移状况,进一步确认插管是否在气管内或过深。
十三、经皮气切
十四、超声引导环甲膜穿刺切开术
十五、神经阻滞
十六、经外周静脉置入PICC
十七、儿科超声引导下相关操作的特点
十八、重症超声与骨骼肌
十九、困难外周静脉超声引导下置管
参考文献(上下滑动查看更多)
KellyFE, FongK, HirschN, et al. Intensive care medicine is 60 years old: the history and future of the intensive care unit[J]. Clin Med (Lond), 2014, 14(4): 376-379. DOI: 10.7861/clinmedicine.14-4-376.
[2]
VincentJL. Obituary: dr max harry weil[J]. Crit Care, 2011, 15(5): 192. DOI: 10.1186/cc10347.
[3]
Forssmann-FalckR. Werner forssmann: a pioneer of cardiology[J]. Am J Cardiol, 1997, 79(5): 651-660. DOI: 10.1016/S0002-9149(96)00833-8.
[4]
SeldingerSI. Catheter replacement of the needle in percutaneous arteriography: a new technique[J]. Acta radiol, 1953, 39(5): 368-376. DOI: 10.1080/02841850802133386.
[5]
WilsonJN, GrowJB, DemongCV, et al. Central venous pressure in optimal blood volume maintenance[J].Arch Surg, 1962, 85: 563-578. DOI: 10.1001/archsurg.1962.01310040035005.
[6]
BeheshtiMV. A concise history of central venous access[J]. Tech Vasc Interv Radiol, 2011, 14(4): 184-185.DOI: 10.1053/j.tvir.2011.05.002.
[7]
ChatterjeeK. The Swan-Ganz catheters: past, present, and future. A viewpoint[J]. Circulation, 2009, 119(1):147-152. DOI: 10.1161/CIRCULATIONAHA.108.811141.
[8]
BluemleLW. Early days of hemofiltration[J]. ASAIO Trans, 1987, 33(2): 54-56. DOI: 10.5414/CN109435.
[9]
LimMW. The history of extracorporeal oxygenators[J]. Anaesthesia, 2006, 61(10): 984-995. DOI: 10.1111/j.1365-2044.2006.04702.x.
[10]
OurielK. Preventing complications of central venous catheterization[J]. N Engl J Med, 2003, 348(26): 2684-2686. DOI: 10.1056/NEJMra011883.
[11]
SchapiraM, SternWZ. Hazards of subclavian vein cannulation for central venous pressure monitoring[J]. JAMA, 1967, 201(5): 327-329. DOI: 10.1001/jama.1967.03130050061024.
[12]
CanteyEP, WalterJM, CorbridgeT, et al. Complications of thoracentesis: incidence, risk factors, and strategies for prevention[J]. Curr Opin Pulm Med, 2016, 22(4): 378-385. DOI: 10.1097/MCP.0000000000000285.
[13]
MaggioliniS, GentileG, FarinaA, et al. Safety, efficacy, and complications of pericardiocentesis by real-time echo-monitored procedure[J]. Am J Cardiol,2016,117(8): 1369-1374. DOI: 10.1016/j.amjcard.2016.01.043.
[14]
De GottardiA, ThévenotT, SpahrL, et al. Risk of complications after abdominal paracentesis in cirrhotic patients: a prospective study[J]. Clin Gastroenterol Hepatol,2009, 7(8): 906-909. DOI: 10.1016/j.cgh.2009.05.004.
[15]
RunyonBA, CanawatiHN, AkriviadisEA. Optimization of ascitic fluid culture technique[J]. Gastroenterology,1988, 95(5): 1351-1355. DOI: 10.1016/0016-5085(88)90372-1.
[16]
EbbinghausH. Memory: a contribution to experimental psychology[J]. Ann Neurosci,2013,20(4): 155-156.DOI: 10.5214/ans.0972.7531.200408.
[17]
LoonF, ScholtenHJ, KorstenHH, et al, The learning curve for ultrasound-guided peripheral intravenous cannulation in adults: a multicenter study[J]. Med Ultrason,2022,24(2): 188-195. DOI: 10.11152/mu-3322.
[18]
AndersonAP, TarocAM, WangX, et al. Ultrasound guided peripheral Ⅳ placement: an observational study of the learning curve in pediatric patients[J]. J Vasc Access,2022,23(2): 250-256. DOI: 10.1177/1129729820987958.
[19]
MullaneyPJ. Qualitative ultrasound training: defining the learning curve[J]. Clin Radiol,2019, 74(4): 327.e7-327.e19. DOI: 10.1016/j.crad.2018.12.018.
[20]
PetiotS, GuinotPG, DioufM, et al. Learning curve for real-time ultrasound-guided percutaneous tracheostomy[J]. Anaesth Crit Care Pain Med,2017,36(5): 279-283. DOI: 10.1016/j.accpm.2016.07.005.
[21]
OmidM, RafieiMH, HosseinpourM, et al. Ultrasound-guided percutaneous central venous catheterization in infants: learning curve and related complications[J]. Adv Biomed Res,2015,4: 199. DOI: 10.4103/2277-9175.166135.
[22]
ChenkinJ, McCartneyCJ, JelicT, et al. Defining the learning curve of point-of-care ultrasound for confirming endotracheal tube placement by emergency physicians[J]. Crit Ultrasound J,2015,7(1): 14. DOI: 10.1186/s13089-015-0031-7.
[23]
SznajderJI, ZveibilFR, BittermanH, et al. Central vein catheterization. Failure and complication rates by three percutaneous approaches[J]. Arch Intern Med, 1986, 146(2): 259-261. DOI: 10.1001/archinte.146.2.259.
[24]
VeenstraDL, SaintS, SahaS, et al. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis[J]. JAMA,1999,281(3): 261-267. DOI: 10.1001/jama.281.3.261.
[25]
BeigiP, SalcudeanSE, NgGC, et al. Enhancement of needle visualization and localization in ultrasound[J]. Int J Comput Assist Radiol Surg,2021, 16(1): 169-178. DOI: 10.1007/s11548-020-02227-7.
[26]
DillaneD, TsuiBC. From basic concepts to emerging technologies in regional anesthesia[J]. Curr Opin Anaesthesiol, 2010, 23(5): 643-649. DOI: 10.1097/ACO.0b013e32833d9513.
[27]
LampertiM, BodenhamAR, PittirutiM, et al. International evidence-based recommendations on ultrasound-guided vascular access[J]. Intensive Care Med,2012, 38(7): 1105-1117. DOI: 10.1007/s00134-012-2597-x.
[28]
BrassP, HellmichM, KolodziejL, et al. Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization[J]. Cochrane Database Syst Rev,2015, 1(1): CD006962. DOI: 10.1002/14651858.CD006962.pub2.
[29]
Müller-OrtizH, Pedreros-RosalesC, Silva-CarvajalJP, et al. Prevalence of complications associated with central venous catheter instalation for hemodyalisis[J]. Rev Med Chil,2019,147(4): 458-464. DOI: 10.4067/S0034-98872019000400458.
[30]
Oulego-ErrozI, González-CortesR, García-SolerP, et al. Ultrasound-guided or landmark techniques for central venous catheter placement in critically ill children[J]. Intensive Care Med,2018,44(1): 61-72. DOI: 10.1007/s00134-017-4985-8.
[31]
Rivera-TocancipáD, Díaz-SánchezE, Montalvo-ArceCA. Ultrasound versus anatomical landmarks: immediate complications in the central venous catheterization in children under 18 years of age[J]. Rev Esp Anestesiol Reanim (Engl Ed),2018,65(7): 366-372. DOI: 10.1016/j.redar.2018.02.007.
[32]
BrassP, HellmichM, KolodziejL, et al. Ultrasound guidance versus anatomical landmarks for subclavian or femoral vein catheterization[J]. Cochrane Database Syst Rev,2015, 1(1): CD011447. DOI: 10.1002/14651858.CD011447.
[33]
AttieGA, FlumignanC, SilvaM, et al. What do Cochrane systematic reviews say about ultrasound-guided vascular access[J]. Sao Paulo Med J, 2019, 137(3): 284-291. DOI: 10.1590/1516-3180.2019.0113070519.
[34]
OakleyE, WongAM. Ultrasound-assisted peripheral vascular access in a paediatric ED[J]. Emerg Med Australas,2010, 22(2): 166-170. DOI: 10.1111/j.1742-6723.2010.01281.x.
[35]
PandurangaduAV, TuckerJ, BrackneyAR, et al. Ultrasound-guided intravenous catheter survival impacted by amount of catheter residing in the vein[J].Emerg Med J,2018,35(9): 550-555. DOI: 10.1136/emermed-2017-206803.
[36]
LampertiM, BiasucciDG, DismaN, et al. European Society of Anaesthesiology guidelines on peri-operative use of ultrasound-guided for vascular access (PERSEUS vascular access) [J].Eur J Anaesthesiol,2020,37(5): 344-376. DOI: 10.1097/EJA.0000000000001180.
[37]
WhiteL, HalpinA, TurnerM, et al. Ultrasound-guided radial artery cannulation in adult and paediatric populations: a systematic review and meta-analysis[J]. Br J Anaesth, 2016,116(5): 610-617. DOI: 10.1093/bja/aew097.
[38]
ChoSA, JangYE, JiSH, et al. Ultrasound-guided arterial catheterization[J]. Anesth Pain Med (Seoul),2021, 16(2): 119-132. DOI: 10.17085/apm.21012.
[39]
AyoubiehH, AlkhaliliE. Pleural disease[J]. N Engl J Med, 2018,378(18): 1753. DOI: 10.1056/NEJMra1403503.
[40]
Rodriguez LimaDR, YepesAF, Birchenall JiménezCI, et al. Real-time ultrasound-guided thoracentesis in the intensive care unit: prevalence of mechanical complications[J].Ultrasound J,2020, 12(1): 25. DOI: 10.1186/s13089-020-00172-9.
[41]
HoffmanT, DuPlessis M, PrekupecMP, et al. Ultrasound-guided central venous catheterization: a review of the relevant anatomy, technique, complications, and anatomical variations[J]. Clin Anat,2017,30(2): 237-250. DOI: 10.1002/ca.22768.
[42]
GordonAC, SalikenJC, JohnsD, et al. US-guided puncture of the internal jugular vein: complications and anatomic considerations[J]. J Vasc Interv Radiol,1998,9(2): 333-338. DOI: 10.1016/s1051-0443(98)70277-5.
[43]
TurbaUC, UflackerR, HanneganC, et al. Anatomic relationship of the internal jugular vein and the common carotid artery applied to percutaneous transjugular procedures[J].Cardiovasc Intervent Radiol,2005,28(3): 303-306. DOI: 10.1007/s00270-004-0039-z.
[44]
BenterT, TeichgräberUK, KlühsL, et al. Anatomical variations in the internal jugular veins of cancer patients affecting central venous access. Anatomical variation of the internal jugular vein[J]. Ultraschall Med,2001,22(1): 23-26. DOI: 10.1055/s-2001-11243.
[45]
JenssenC, BrkljacicB, HockeM, et al. Erratum: EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part Ⅵ-ultrasound-guided vascular interventions[J]. Ultraschall Med,2016,37(5): e1. DOI: 10.1055/s-0035-1566900.
[46]
CalvacheJA, RodríguezMV, TrochezA, et al. Incidence of mechanical complications of central venous catheterization using landmark technique: do not try more than 3 times[J].J Intensive Care Med,2016,31(6): 397-402. DOI: 10.1177/0885066614541407.
[47]
SaugelB, ScheerenT, TeboulJL. Ultrasound-guided central venous catheter placement: a structured review and recommendations for clinical practice[J].Crit Care,2017, 21(1): 225. DOI: 10.1186/s13054-017-1814-y.
[48]
DietrichCF, HornR, MorfS, et al. Ultrasound-guided central vascular interventions, comments on the European Federation of Societies for Ultrasound in Medicine and Biology guidelines on interventional ultrasound[J]. J Thorac Dis,2016,8(9): E851-E868. DOI: 10.21037/jtd.2016.08.49.
[49]
TurkerG, KayaFN, GurbetA, et al. Internal jugular vein cannulation: an ultrasound-guided technique versus a landmark-guided technique[J]. Clinics (Sao Paulo),2009,64(10): 989-992. DOI: 10.1590/S1807-59322009001000009.
[50]
DenysBG, UretskyBF, ReddyPS. Ultrasound-assisted cannulation of the internal jugular vein. A prospective comparison to the external landmark-guided technique[J]. Circulation,1993, 87(5): 1557-1562. DOI: 10.1161/01.CIR.87.5.1557.
[51]
王小亭, 刘大为, 于凯江, 等. 中国重症超声专家共识[J].中华内科杂志,2016,55(11): 900-912. DOI: 10.3969/j.issn.1004-583X.2017.05.001.
[52]
张青, 王小亭, 张宏民, 等. 重症治疗新标准:一针、一眼、一导管[J]. 中华医学杂志,2020,100(9): 641-644. DOI: 10.3760/cma.j.issn.0376-2491.2020.09.001.
[53]
张青, 王小亭, 张宏民, 等. 重症超声引导的血管置管精准操作[J]. 中华内科杂志,2020,59(12): 995-998. DOI: 10.3760/cma.j.cn112138-20200110-00016.
[54]
TrabelsiB, HajjejZ, DriraD, et al. Comparison of ultrasound-guided internal jugular vein and supraclavicular subclavian vein catheterization in critically ill patients: a prospective, randomized clinical trial[J]. Ann Intensive Care,2022,12(1): 91. DOI: 10.1186/s13613-022-01065-x.
[55]
SidotiA, BrogiE, BiancofioreG, et al. Ultrasound-versus landmark-guided subclavian vein catheterization: a prospective observational study from a tertiary referral hospital[J]. Sci Rep,2019,9(1): 12248. DOI: 10.1038/s41598-019-48766-1.
[56]
ShiverS, BlaivasM, LyonM. A prospective comparison of ultrasound-guided and blindly placed radial arterial catheters[J]. Acad Emerg Med,2006,13(12): 1275-1279. DOI: 10.1197/j.aem.2006.07.015.
[57]
BhattacharjeeS, MaitraS, BaidyaDK. Comparison between ultrasound guided technique and digital palpation technique for radial artery cannulation in adult patients: an updated meta-analysis of randomized controlled trials[J]. J Clin Anesth, 2018,47: 54-59. DOI: 10.1016/j.jclinane.2018.03.019.
[58]
UedaK, BaymanEO, JohnsonC, et al. A randomised controlled trial of radial artery cannulation guided by Doppler vs. palpation vs. ultrasound[J]. Anaesthesia,2015, 70(9): 1039-1044. DOI: 10.1111/anae.13062.
[59]
张建, 盖玉彪, 隋周平, 等. B超引导下桡动脉置管在ICU动脉困难穿刺患者中的应用[J]. 中国保健营养,2019,29(6): 389. DOI: 10.3969/j.issn.1004-7484.2019.06.369.
[60]
曹岚, 张丽娜, 艾美林,等. 超声引导下桡动脉穿刺置管在重症患者中的应用[J]. 中南大学学报(医学版), 2018,43(4): 447-451.
[61]
GuWJ, TieHT, LiuJC, et al. Efficacy of ultrasound-guided radial artery catheterization: a systematic review and meta-analysis of randomized controlled trials[J]. Crit Care, 2014,18(3): R93. DOI: 10.1186/cc13862.
[62]
TangL, WangF, LiY, et al. Ultrasound guidance for radial artery catheterization: an updated meta-analysis of randomized controlled trials[J]. PLoS One,2014, 9(11): e111527. DOI: 10.1371/journal.pone.0111527.
[63]
HelmEJ, RahmanNM, TalakoubO, et al. Course and variation of the intercostal artery by CT scan[J]. Chest,2013,143(3): 634-639. DOI: 10.1378/chest.12-1285.
[64]
ChoiS, TrieuJ, RidleyL. Radiological review of intercostal artery: anatomical considerations when performing procedures via intercostal space[J]. J Med Imaging Radiat Oncol,2010, 54(4): 302-306. DOI: 10.1111/j.1754-9485.2010.02175.x.
[65]
JeonEY, ChoYK, YoonDY, et al. Angiographic analysis of the lateral intercostal artery perforator of the posterior intercostal artery: anatomic variation and clinical significance[J]. Diagn Interv Radiol,2015,21(5): 415-418. DOI: 10.5152/dir.2015.15096.
[66]
CarneyM, RavinCE. Intercostal artery laceration during thoracocentesis: increased risk in elderly patients[J]. Chest,1979,75(4): 520-522. DOI: 10.1378/chest.75.4.520.
[67]
YoneyamaH, ArahataM, TemaruR, et al. Evaluation of the risk of intercostal artery laceration during thoracentesis in elderly patients by using 3D-CT angiography[J]. Intern Med,2010,49(4): 289-292. DOI: 10.2169/internalmedicine.49.2618.
[68]
SalameG, WittrockE, PatelH, et al. Is increasing age associated with higher rates of intercostal arteries vulnerable ′to laceration? A point of care ultrasound study[J]. J Clin Med, 2022, 11(19):5788. DOI: 10.3390/jcm12082905.
[69]
SalamonsenM, DobeliK, McGrathD, et al. Physician-performed ultrasound can accurately screen for a vulnerable intercostal artery prior to chest drainage procedures[J]. Respirology,2013,18(6): 942-947. DOI: 10.1111/resp.12088.
[70]
WeingardtJP, GuicoRR, NemcekAA, et al. Ultrasound findings following failed, clinically directed thoracenteses[J]. J Clin Ultrasound,1994,22(7): 419-426. DOI: 10.1002/jcu.1870220702.
[71]
TeliasI, SpadaroS. Techniques to monitor respiratory drive and inspiratory effort[J]. Curr Opin Crit Care,2020,26(1): 3-10. DOI: 10.1097/MCC.0000000000000680.
[72]
BoussugesA, GoleY, BlancP. Diaphragmatic motion studied by m-mode ultrasonography: methods, reproducibility, and normal values[J]. Chest,2009,135(2): 391-400. DOI: 10.1378/chest.08-1541.
[73]
RaptopoulosV, DavisLM, LeeG, et al. Factors affecting the development of pneumothorax associated with thoracentesis[J]. AJR Am J Roentgenol,1991,156(5): 917-920. DOI: 10.2214/ajr.156.5.2017951.
[74]
Feller-KopmanD. Ultrasound-guided thoracentesis[J].Chest,2006,129(6): 1709-1714. DOI: 10.1378/chest.129.6.1709.
[75]
SoldatiG, SmargiassiA, InchingoloR, et al. Ultrasound-guided pleural puncture in supine or recumbent lateral position-feasibility study[J]. Multidiscip Respir Med,2013,8(1): 18. DOI: 10.1186/2049-6958-8-18.
[76]
ShimodaM, MorimotoK, TanakaY, et al. Evaluation of the position of the needle tip during thoracentesis: experimental study[J]. Medicine (Baltimore),2021,100(28): e26600. DOI: 10.1097/MD.0000000000026600.
[77]
DiaconAH, BrutscheMH, SolèrM. Accuracy of pleural puncture sites: a prospective comparison of clinical examination with ultrasound[J]. Chest,2003,123(2): 436-441. DOI: 10.1378/chest.123.2.436.
[78]
GroganDR, IrwinRS, ChannickR, et al. Complications associated with thoracentesis. A prospective, randomized study comparing three different methods[J]. Arch Intern Med,1990, 150(4): 873-877. DOI: 10.1001/archinte.150.4.873.
[79]
MacDuffA, ArnoldA, HarveyJ. Management of spontaneous pneumothorax: British Thoracic Society Pleural Disease Guideline 2010[J]. Thorax,2010,65Suppl 2: ii18-31. DOI: 10.1136/thx.2010.136986.
[80]
CorcoranJP, Tazi-MezalekR, MaldonadoF, et al. State of the art thoracic ultrasound: intervention and therapeutics[J]. Thorax,2017,72(9): 840-849. DOI: 10.1136/thoraxjnl-2016-209340.
[81]
ShaoRJ, DuMJ, XieJT. Use of lung ultrasound for the diagnosis and treatment of pleural effusion[J]. Eur Rev Med Pharmacol Sci, 2022,26(23): 8771-8776. DOI: 10.1136/thoraxjnl-2016-209340.
[82]
HelgesonSA, FritzAV, TatariMM, et al. Reducing iatrogenic pneumothoraces: using real-time ultrasound guidance for pleural procedures[J]. Crit Care Med,2019,47(7): 903-909. DOI: 10.1097/CCM.0000000000003761.
[83]
AlrajhiK, WooMY, VaillancourtC. Test characteristics of ultrasonography for the detection of pneumothorax: a systematic review and meta-analysis[J].Chest,2012,141(3): 703-708. DOI: 10.1378/chest.11-0131.
[84]
VolpicelliG. Sonographic diagnosis of pneumothorax[J]. Intensive Care Med,2011, 37(2): 224-232. DOI: 10.1007/s00134-010-2079-y.
[85]
Santos-SilvaJ, LichtensteinD, TuinmanPR, et al. The lung point, still a sign specific to pneumothorax[J]. Intensive Care Med,2019,45(9): 1327-1328. DOI: 10.1007/s00134-019-05677-z.
[86]
LichtensteinDA, MenuY. A bedside ultrasound sign ruling out pneumothorax in the critically ill lung sliding[J]. Chest, 1995,108(5): 1345-1348. DOI: 10.1378/chest.108.5.1345.
[87]
LichtensteinD, MezièreG, BidermanP, et al. The comet-tail artifact: an ultrasound sign ruling out pneumothorax[J]. Intensive Care Med,1999,25(4): 383-388. DOI: 10.1007/s001340050862.
[88]
VolpicelliG, BoeroE, SverzellatiN, et al. Semi-quantification of pneumothorax volume by lung ultrasound[J]. Intensive Care Med,2014,40(10): 1460-1467. DOI: 10.1007/s00134-014-3402-9.
[89]
VasquezDG, BergGM, SrourSG, et al. Lung ultrasound for detecting pneumothorax in injured children: preliminary experience at a community-based Level Ⅱ pediatric trauma center[J]. Pediatr Radiol,2020,50(3): 329-337. DOI: 10.1007/s00247-019-04509-y.
[90]
KaracabeyS, SanriE, MetinB, et al. Use of ultrasonography for differentiation between bullae and pneumothorax[J]. Emerg Radiol,2019,26(1): 15-19. DOI: 10.1007/s10140-018-1640-9.
[91]
SkulecR, ParizekT, DavidM, et al. Lung point sign in ultrasound diagnostics of pneumothorax: imitations and variants[J]. Emerg Med Int,2021,2021: 6897946. DOI: 10.1155/2021/6897946.
[92]
AzizSG, PatelBB, IeSR, et al. The lung point sign, not pathognomonic of a pneumothorax[J]. Ultrasound Q,2016, 32(3): 277-279. DOI: 10.1097/ruq.0000000000000199.
[93]
SteenvoordenTS, HilderinkB, ElbersP, et al. Lung point in the absence of pneumothorax[J]. Intensive Care Med,2018,44(8): 1329-1330. DOI: 10.1007/s00134-018-5112-1.
[94]
MercaldiCJ, LanesSF. Ultrasound guidance decreases complications and improves the cost of care among patients undergoing thoracentesis and paracentesis[J]. Chest,2013,143(2): 532-538. DOI: 10.1378/chest.12-0447.
[95]
TiradoA, WuT, NobleVE, et al. Ultrasound-guided procedures in the emergency department-diagnostic and therapeutic asset[J]. Emerg Med Clin North Am,2013,31(1): 117-149. DOI: 10.1016/j.emc.2012.09.009.
[96]
SriprasadS, YuDF, MuirGH, et al. Positional anatomy of vessels that may be damaged at laparoscopy: new access criteria based on CT and ultrasonography to avoid vascular injury[J]. J Endourol,2006,20(7): 498-503. DOI: 10.1089/end.2006.20.498.
[97]
EpsteinJ, AroraA, EllisH. Surface anatomy of the inferior epigastric artery in relation to laparoscopic injury[J]. Clin Anat,2004,17(5): 400-408. DOI: 10.1002/ca.10192.
[98]
BrownGM, OtrembaM, DevineLA, et al. Defining competencies for ultrasound-guided bedside procedures: consensus opinions from canadian physicians[J]. J Ultrasound Med,2016,35(1): 129-141. DOI: 10.7863/ultra.15.01063.
[99]
JaidkaA, HobbsH, KoenigS, et al. Better with ultrasound: transesophageal echocardiography[J]. Chest,2019,155(1): 194-201. DOI: 10.1016/j.chest.2018.09.023.
[100]
EnnisJ,SchultzG,PereraP,et al. Ultrasound for detection of ascites and for guidance of the paracentesis procedure: technique and review of the literature[J].Intern J Physical Med Rehabilitation,2014,5(20): 1277-1293. DOI: 10.4236/ijcm.2014.520163.
[101]
MalloryA, SchaeferJW. Complications of diagnostic paracentesis in patients with liver disease[J]. JAMA,1978,239(7): 628-630. DOI: 10.2215/CJN.03040322.
[102]
DrosteJC, RiggottC, MaxfieldT, et al. Ultrasound findings in suspected ascites referred for paracentesis[J]. J Med Ultrasound,2022,30(1): 50-53. DOI: 10.4103/JMU.JMU_35_21.
[103]
YehHC, WolfBS. Ultrasonography in ascites[J]. Radiology,1977,124(3): 783-790. DOI: 10.1148/124.3.783.
[104]
CauleyKA. Fluoroscopically guided lumbar puncture[J]. AJR Am J Roentgenol,2015,205(4): W442-450. DOI: 10.2214/AJR.14.14028.
[105]
MillingtonSJ, Silva RestrepoM, KoenigS. Better with ultrasound: lumbar puncture[J].Chest,2018,154(5): 1223-1229. DOI: 10.1016/j.chest.2018.07.010.
[106]
KirschnerJM, HunterBR. Review: ultrasound-assisted lumbar puncture (LP) does not increase procedural success but reduces traumatic LPs[J]. Ann Intern Med,2019,170(2): JC9. DOI: 10.1111/acem.13558.
[107]
SidiropoulouT, ChristodoulakiK, SiristatidisC. Pre-procedural lumbar neuraxial ultrasound-a systematic review of randomized controlled trials and meta-analysis[J]. Healthcare (Basel),2021,9(479): 1-15. DOI: 10.3390/healthcare9040479.
[108]
GottliebM, HolladayD, PeksaGD. Ultrasound-assisted lumbar punctures: a systematic review and meta-analysis[J]. Acad Emerg Med,2019,26(1): 85-96. DOI: 10.1111/acem.13558.
[109]
StollerJZ, FragaMV. Real-time ultrasound-guided lumbar puncture in the neonatal intensive care unit[J]. J Perinatol,2021,41(10): 2495-2498. DOI: 10.1038/s41372-021-01152-0.
[110]
BaskinP, BerdeC, SaravananA, et al. Ultrasound-guided spinal anesthesia in infants: a narrative review[J]. Reg Anesth Pain Med,2023, 48(12):608-614. DOI: 10.1136/rapm-2022-104025.
[111]
CreaneyM, MullaneD, CasbyC, et al. Ultrasound to identify the lumbar space in women with impalpable bony landmarks presenting for elective caesarean delivery under spinal anaesthesia: a randomised trial[J]. Int J Obstet Anesth,2016,28: 12-16. DOI: 10.1016/j.ijoa.2016.07.007.
[112]
MofidiM, MohammadiM, SaidiH, et al. Ultrasound guided lumbar puncture in emergency department: time saving and less complications[J]. J Res Med Sci,2013,18(4): 303-307. DOI: 10.5812/ircmj.4883.
[113]
Veiga-CanutoD, Cifrián-PérezM, Pitarch-CastellanoI, et al. Ultrasound-guided lumbar puncture for nusinersen administration in spinal muscular atrophy patients[J]. Eur J Neurol,2021,28(2): 676-680. DOI: 10.1111/ene.14586.
[114]
StronyR. Ultrasound-assisted lumbar puncture in obese patients[J]. Crit Care Clin,2010,26(4): 661-664. DOI: 10.1016/j.ccc.2010.07.002.
[115]
Pérez-CasaresA, CesarS, Brunet-GarciaL, et al. Echocardiographic evaluation of pericardial effusion and cardiac tamponade[J]. Front Pediatr,2017,5: 79. DOI: 10.3389/fped.2017.00079.
[116]
FaustT, Fields. Ultrasound-guided cardiac procedures//AdhikariS, BlaivasM. The ultimate guide to point-of-care ultrasound-guided procedures[M]. Switzerland: Springer Nature, 2020:63-79.
[117]
KumarR, SinhaA, LinMJ, et al. Complications of pericardiocentesis: a clinical synopsis[J]. Int J Crit Illn Inj Sci,2015,5(3): 206-212. DOI: 10.4103/2229-5151.165007.
[118]
JungHO. Pericardial effusion and pericardiocentesis: role of echocardiography[J]. Korean Circ J,2012,42(11): 725-734. DOI: 10.4070/kcj.2012.42.11.725.
[119]
LiZ, TangY, WangP, et al. Diagnosis and treatment of retroperitoneal infection[J]. Surg Infect (Larchmt),2021,22(5): 477-484. DOI: 10.1089/sur.2020.126.
[120]
van SantvoortHC, BesselinkMG, BakkerOJ, et al. A step-up approach or open necrosectomy for necrotizing pancreatitis[J]. N Engl J Med,2010,362(16): 1491-502. DOI: 10.1056/NEJMoa0908821.
[121]
BesselinkMG, van SantvoortHC, NieuwenhuijsVB, et al. Minimally invasive ‘step-up approach’ versus maximal necrosectomy in patients with acute necrotising pancreatitis (PANTER trial): design and rationale of a randomised controlled multicenter trial [ISRCTN13975868][J]. BMC Surg,2006,6: 6. DOI: 10.1186/1471-2482-6-6.
[122]
HollemansRA, BakkerOJ, BoermeesterMA, et al. Superiority of step-up approach vs open necrosectomy in long-term follow-up of patients with necrotizing pancreatitis[J]. Gastroenterology,2019,156(4): 1016-1026. DOI: 10.1053/j.gastro.2018.10.045.
[123]
BurnsJ, CooperE, SaltG, et al. Retrospective observational review of percutaneous cannulation for extracorporeal membrane oxygenation[J].ASAIO J,2016,62(3): 325-328. DOI: 10.1097/mat.0000000000000339.
[124]
AhnHJ, LeeJW, JooKH, et al. Point-of-care ultrasound-guided percutaneous cannulation of extracorporeal membrane oxygenation: make it simple[J]. J Emerg Med,2018,54(4): 507-513. DOI: 10.1016/j.jemermed.2017.12.013.
[125]
PlattsDG, SedgwickJF, BurstowDJ, et al. The role of echocardiography in the management of patients supported by extracorporeal membrane oxygenation[J]. J Am Soc Echocardiogr,2012,25(2): 131-141. DOI: 10.1016/j.echo.2011.11.009.
[126]
ShimeN, HosokawaK, MacLarenG. Ultrasound imaging reduces failure rates of percutaneous central venous catheterization in children[J]. Pediatr Crit Care Med,2015,16(8): 718-725. DOI: 10.1097/PCC.0000000000000470.
[127]
DonkerDW, MeuweseCL, BraithwaiteSA, et al. Echocardiography in extracorporeal life support: a key player in procedural guidance, tailoring and monitoring[J]. Perfusion,2018,33(1Suppl): 31-41. DOI: 10.1177/0267659118766438.
[128]
AbramsD, GaranAR, AbdelbaryA, et al. Position paper for the organization of ECMO programs for cardiac failure in adults[J]. Intensive Care Med,2018,44(6): 717-729. DOI: 10.1007/s00134-018-5064-5.
[129]
CianchiG, LazzeriC, BonizzoliM, et al. Echo-guided insertion of a dual-lumen cannula for venovenous extracorporeal membrane oxygenation[J]. ASAIO J,2019,65(4): 414-416. DOI: 10.1097/MAT.0000000000000826.
[130]
HiroseH, YamaneK, MarhefkaG, et al. Right ventricular rupture and tamponade caused by malposition of the Avalon cannula for venovenous extracorporeal membrane oxygenation[J]. J Cardiothorac Surg,2012,7: 36. DOI: 10.1186/1749-8090-7-36.
[131]
HiltyWM, HudsonPA, LevittMA, et al. Real-time ultrasound-guided femoral vein catheterization during cardiopulmonary resuscitation[J]. Ann Emerg Med,1997, 29(3): 331-336; discussion 337. DOI: 10.1016/s0196-0644(97)70344-5.
[132]
BanfiC, PozziM, SiegenthalerN, et al. Veno-venous extracorporeal membrane oxygenation: cannulation techniques[J]. J Thorac Dis, 2016,8(12): 3762-3773. DOI: 10.21037/jtd.2016.12.88.
[133]
FirstenbergMS, OrsinelliDA. ECMO and ECHO: the evolving role of quantitative echocardiography in the management of patients requiring extracorporeal membrane oxygenation[J]. J Am Soc Echocardiogr,2012,25(6): 641-643. DOI: 10.1016/j.echo.2012.04.005.
[134]
BonacchiM, HarmelinG, PerisA, et al. A novel strategy to improve systemic oxygenation in venovenous extracorporeal membrane oxygenation: the“χ-configuration”[J]. J Thorac Cardiovasc Surg,2011,142(5): 1197-1204. DOI: 10.1016/j.jtcvs.2011.01.046.
[135]
DoufléG, RoscoeA, BilliaF, et al. Echocardiography for adult patients supported with extracorporeal membrane oxygenation[J]. Crit Care,2015,19: 326. DOI: 10.1186/s13054-015-1042-2.
[136]
KaufeldT, BeckmannE, IusF, et al. Risk factors for critical limb ischemia in patients undergoing femoral cannulation for venoarterial extracorporeal membrane oxygenation: is distal limb perfusion a mandatory approach[J]. Perfusion,2019,34(6): 453-459. DOI: 10.1177/0267659119827231.
[137]
JuoYY, SkanckeM, SanaihaY, et al. Efficacy of distal perfusion cannulae in preventing limb ischemia during extracorporeal membrane oxygenation: a systematic review and meta-analysis[J]. Artif Organs,2017,41(11): E263-E273. DOI: 10.1111/aor.12942.
[138]
LorussoR, WhitmanG, MilojevicM, et al. 2020 EACTS/ELSO/STS/AATS expert consensus on post-cardiotomy extracorporeal life support in adult patients[J]. Eur J Cardiothorac Surg,2021,59(1): 12-53. DOI: 10.1093/ejcts/ezaa283.
[139]
VilletS, ChioleroRL, BollmannMD, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients[J]. Clin Nutr, 2005,24(4): 502-509. DOI: 10.1016/j.clnu.2005.03.006.
[140]
McClaveSA, TaylorBE, MartindaleRG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: society of critical care medicine (SCCM) and american society for parenteral and enteral nutrition (A.S.P.E.N.) [J]. JPEN J Parenter Enteral Nutr,2016,40(2): 159-211. DOI: 10.1177/0148607115621863.
[141]
张荣丽, 何伟, 李彤, 等. B超检测胃动力指导危重症病人肠内营养的应用[J]. 肠外与肠内营养,2011,18(6): 341-343,347. DOI: 10.3969/j.issn.1007-810X.2011.06.007.
[142]
李丹, 何伟, 许媛. 超声胃动力测定指导鼻空肠营养管置管的临床价值[J]. 肠外与肠内营养,2016,23(3): 179-181. DOI: 10.16151/j.1007-810x.2016.03.013.
[143]
Reintam BlaserA, StarkopfJ, AlhazzaniW, et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines[J]. Intensive Care Med,2017,43(3): 380-398. DOI: 10.1007/s00134-016-4665-0.
[144]
WhatleyK, TurnerWW, DeyM, et al. When does metoclopramide facilitate transpyloric intubation[J]. JPEN J Parenter Enteral Nutr,1984,8(6): 679-681. DOI: 10.1177/0148607184008006679.
[145]
中国研究型医院学会危重医学专业委员会, 中国研究型医院学会危重医学专委会护理研究学组, 金歌等. 基于循证的成人床旁超声护理专家共识[J]. 中华危重病急救医学,2020,32(9): 1029-1039. DOI: 10.3760/cma.j.cn121430-20200817-00584.
[146]
曹岚, 张丽娜, 王小亭, 等. 重症护理超声专家共识[J]. 中华现代护理杂志,2020,26(33): 4577-4590. DOI: 10.3760/cma.j.cn115682-20200416-02787,
[147]
MardersteinEL, SimmonsRL, OchoaJB. Patient safety: effect of institutional protocols on adverse events related to feeding tube placement in the critically ill[J]. J Am Coll Surg,2004,199(1): 39-47; discussion 47-50. DOI: 10.1016/j.jamcollsurg.2004.03.011.
[148]
HalloranO, GrecuB, SinhaA. Methods and complications of nasoenteral intubation[J]. JPEN J Parenter Enteral Nutr,2011,35(1): 61-66. DOI: 10.1177/0148607110370976.
[149]
KohanEJ, WirthGA. Anatomy of the neck[J]. Clin Plast Surg,2014,41(1): 1-6. DOI: 10.1016/j.cps.2013.09.016.
[150]
ZhangQ, SunJH, LiuJT, et al. Placement of a jejunal feeding tube via an ultrasound-guided antral progressive water injection method[J]. Chin Med J (Engl),2018,131(14): 1680-1685. DOI: 10.4103/0366-6999.235874.
[151]
LiuY, WangY, ZhangB, et al. Gastric-tube versus post-pyloric feeding in critical patients: a systematic review and meta-analysis of pulmonary aspiration-and nutrition-related outcomes[J]. Eur J Clin Nutr, 2021, 75(9): 1337-1348. DOI: 10.1038/s41430-021-00860-2.
[152]
ÖzdemirU, YıldızŞ, AygencelG, et al. Ultrasonography-guided post-pyloric feeding tube insertion in medical intensive care unit patients[J]. J Clin Monit Comput,2022,36(2): 451-459. DOI: 10.1007/s10877-021-00672-6.
[153]
AryaR, SchriftD, ChoeC, et al. Real-time tracheal ultrasound for the confirmation of endotracheal intubations in the intensive care unit: an observational study[J]. J Ultrasound Med, 2019, 38(2): 491-497. DOI: 10.1002/jum.14723.
[154]
GottliebM, NakitendeD, SundaramT, et al. Comparison of static versus dynamic ultrasound for the detection of endotracheal intubation[J]. West J Emerg Med,2018,19(2): 412-416. DOI: 10.5811/westjem.2017.12.36714.
[155]
中国重症超声研究组, 尹万红, 王小亭, 等. 重症超声临床应用技术规范[J]. 中华内科杂志,2018,57(6): 397-417. DOI: 10.3760/cma.j.issn.0578-1426.2018.06.004.
[156]
HashimotoDA, AxtellAL, AuchinclossHG. Percutaneous tracheostomy[J]. N Engl J Med,2020,383(20): e112. DOI: 10.1056/NEJMc2035339.
[157]
KolligE, HeydenreichU, RoetmanB, et al. Ultrasound and bronchoscopic controlled percutaneous tracheostomy on trauma ICU[J]. Injury,2000,31(9): 663-668. DOI: 10.1016/s0020-1383(00)00094-2.
[158]
RudasM, SeppeltI, HerkesR, et al. Traditional landmark versus ultrasound guided tracheal puncture during percutaneous dilatational tracheostomy in adult intensive care patients: a randomised controlled trial[J]. Crit Care,2014,18(5): 514. DOI: 10.1186/s13054-014-0514-0.
[159]
DinhVA, FarshidpanahS, LuS, et al. Real-time sonographically guided percutaneous dilatational tracheostomy using a long-axis approach compared to the landmark technique[J]. J Ultrasound Med,2014,33(8): 1407-1415. DOI: 10.7863/ultra.33.8.1407.
[160]
McCormickB, ManaraAR. Mortality from percutaneous dilatational tracheostomy. A report of three cases[J]. Anaesthesia,2005, 60(5): 490-495. DOI: 10.1111/j.1365-2044.2005.04137.x.
[161]
GobattoA, BesenB, TiernoP, et al. Ultrasound-guided percutaneous dilational tracheostomy versus bronchoscopy-guided percutaneous dilational tracheostomy in critically ill patients (TRACHUS): a randomized noninferiority controlled trial[J]. Intensive Care Med,2016, 42(3): 342-351. DOI: 10.1007/s00134-016-4218-6.
[162]
SongJ, XuanL, WuW, et al. Comparison of percutaneous dilatational tracheostomy guided by ultrasound and bronchoscopy in critically ill obese patients[J]. J Ultrasound Med,2018,37(5): 1061-1069. DOI: 10.1002/jum.14448.
[163]
AlansariM, AlotairH, Al AseriZ, et al. Use of ultrasound guidance to improve the safety of percutaneous dilatational tracheostomy: a literature review[J]. Crit Care,2015,19(1): 229. DOI: 10.1186/s13054-015-0942-5.
[164]
GobattoA, BesenB, CestariM, et al. Ultrasound-guided percutaneous dilational tracheostomy: a systematic review of randomized controlled trials and meta-analysis[J]. J Intensive Care Med,2020,35(5): 445-452. DOI: 10.1177/0885066618755334.
[165]
ElliottDS, BakerPA, ScottMR, et al. Accuracy of surface landmark identification for cannula cricothyroidotomy[J]. Anaesthesia,2010, 65(9): 889-894. DOI: 10.1111/j.1365-2044.2011.06731_1.x.
[166]
BarbeN, MartinP, PascalJ, et al. Repérage de la membrane cricothyroïdienne en phase d′apprentissage: valeur ajoutée de l′échographie? Locating the cricothyroid membrane in learning phase: value of ultrasonography?][J]. Ann Fr Anesth Reanim, 2014, 33(3):163-166. DOI: 10.1016/j.annfar.2014.01.006.
[167]
OwadaG, InagawaG, NakamuraK, et al. Usefulness of ultrasound pre-scanning for cricothyroid membrane puncture in a patient with rupture of a pseudoaneurysm[J]. Masui, 2014, 63(1):77-80.
[168]
RungGW, MarshallWK. Nerve blocks in the critical care environment[J]. Crit Care Clin,1990,6(2): 343-367. DOI: 10.1378/chest.97.4_Supplement.172S.
[169]
GadsdenJ, WarlickA. Regional anesthesia for the trauma patient: improving patient outcomes[J]. Local Reg Anesth, 2015,8: 45-55. DOI: 10.2147/LRA.S55322.
[170]
WenB, WangY, ZhangC, et al. Effect of stellate ganglion block on postoperative recovery of gastrointestinal function in patients undergoing surgery with general anaesthesia: a meta-analysis[J]. BMC Surg,2020,20(1): 284. DOI: 10.1186/s12893-020-00943-0.
[171]
MillingtonSJ, HendinA, ShilohAL, et al. Better with ultrasound: peripheral intravenous catheter insertion[J]. Chest,2020,157(2): 369-375. DOI: 10.1016/j.chest.2019.04.139.
[172]
Safety Committee of Japanese Society of Anesthesiologists. Practical guide for safe central venous catheterization and management 2017[J]. J Anesth, 2020, 34(2): 167-186. DOI: 10.1007/s00540-019-02702-9.
[173]
Parás-BravoP, Paz-ZuluetaM, Sarabia-LavinR, et al. Complications of peripherally inserted central venous catheters: a retrospective cohort study[J]. PLoS One,2016,11(9): e0162479. DOI: 10.1371/journal.pone.0162479.
[174]
WangQ, WangN, SunY. Clinical effect of peripherally inserted central catheters based on modified seldinger technique under guidance of vascular ultrasound[J]. Pak J Med Sci,2016, 32(5): 1179-1183. DOI: 10.12669/pjms.325.1038.
[175]
GottliebM, HolladayD, PeksaGD. Comparison of short-vs long-axis technique for ultrasound-guided peripheral line placement: a systematic review and meta-analysis[J].Cureus, 2018, 10(5): e2718. DOI: 10.7759/cureus.2718.
[176]
WollerSC, StevensSM, EvansRS. The michigan appropriateness guide for intravenous catheters (MAGIC) initiative: a summary and review of peripherally inserted central catheter and venous catheter appropriate use[J]. J Hosp Med, 2016,11(4): 306-310. DOI: 10.1002/jhm.2525.
[177]
NakamutaS, NishizawaT, MatsuhashiS, et al. Real-time ultrasound-guided placement of peripherally inserted central venous catheter without fluoroscopy[J]. J Vasc Access,2018,19(6): 609-614. DOI: 10.1177/1129729818765057.
[178]
OletiT, Jeeva SankarM, ThukralA, et al. Does ultrasound guidance for peripherally inserted central catheter (PICC) insertion reduce the incidence of tip malposition?--a randomized trial[J]. J Perinatol,2019,39(1): 95-101. DOI: 10.1038/s41372-018-0249-x.
[179]
KirkegaardE, LindPC, DolmerH, et al. Supraclavicular ultrasonographic real-time guidance of peripherally inserted central catheters-a feasibility study[J]. Acta Anaesthesiol Scand,2021,65(5): 688-694. DOI: 10.1111/aas.13782.
[180]
UpadhyayJ, BasuS, SrivastavaY, et al. Agitated saline contrast to delineate central venous catheter position in neonates[J]. J Perinatol,2021,41(7): 1638-1644. DOI: 10.1038/s41372-020-0761-7.
[181]
ZochiosV, UmarI, SimpsonN, et al. Peripherally inserted central catheter (PICC)-related thrombosis in critically ill patients[J]. J Vasc Access,2014,15(5): 329-337. DOI: 10.5301/jva.5000239.
[182]
LiX, WangG, YanK, et al. The 1ncidence, risk factors, and patterns of peripherally inserted central catheter-related venous thrombosis in cancer patients followed up by ultrasound[J]. Cancer Manag Res,2021,13: 4329-4340. DOI: 10.2147/CMAR.S301458.
[183]
OkanoH, MayumiT, KataokaY, et al. Outcomes of simulation-based education for vascular access: a systematic review and meta-analysis[J].Cureus,2021,13(8): e17188. DOI: 10.7759/cureus.17188.
[184]
OhEJ, LeeJH, KwonEJ, et al. Simulation-based training using a vessel phantom effectively improved first attempt success and dynamic needle-tip positioning ability for ultrasound-guided radial artery cannulation in real patients: an assessor-blinded randomized controlled study[J]. PLoS One,2020,15(6): e0234567. DOI: 10.1371/journal.pone.0234567.
[185]
de SouzaTH, BrandãoMB, NadalJ, et al. Ultrasound guidance for pediatric central venous catheterization: a meta-analysis[J].Pediatrics,2018,142(5):e20181719. DOI: 10.1542/peds.2018-1719.
[186]
SchieferJ, LichteneggerP, ZimpferD, et al. Performing central venous catheters in neonates and small infants undergoing cardiac surgery using a wireless transducer for ultrasound guidance: a prospective, observational pilot study[J]. BMC Pediatr, 2021, 21(1): 341. DOI: 10.1186/s12887-021-02822-w.
[187]
CurtisSJ, CraigWR, LogueE, et al. Ultrasound or near-infrared vascular imaging to guide peripheral intravenous catheterization in children: a pragmatic randomized controlled trial[J]. CMAJ, 2015, 187(8): 563-570. DOI: 10.18433/j3zp5f.
[188]
DonigerSJ, IshimineP, FoxJC, et al. Randomized controlled trial of ultrasound-guided peripheral intravenous catheter placement versus traditional techniques in difficult-access pediatric patients[J]. Pediatr Emerg Care, 2009, 25(3): 154-159. DOI: 10.1097/PEC.0b013e31819a8946.
[189]
VinogradAM, ChenAE, WoodfordAL, et al. Ultrasonographic guidance to improve first-attempt success in children with predicted difficult intravenous access in the emergency department: a randomized controlled trial[J]. Ann Emerg Med, 2019, 74(1): 19-27. DOI: 10.1016/j.annemergmed.
[190]
AnantasitN, CheeptinnakorntawornP, KhositsethA, et al. Ultrasound versus traditional palpation to guide radial artery cannulation in critically ill children: a randomized trial[J]. J Ultrasound Med, 2017, 36(12): 2495-2501. DOI: 10.1002/jum.14291.
[191]
TakeshitaJ, YoshidaT, NakajimaY, et al. Dynamic needle tip positioning for ultrasound-guided arterial catheterization in infants and small children with deep arteries: a randomized controlled trial. [J] J Cardiothorac Vasc Anesth, 2019, 33(7): 1919-1925. DOI: 10.1053/j.jvca.2018.12.002.
[192]
LiuL, TanY, LiS, et al. “Modified dynamic needle tip positioning”short-axis, out-of-plane, ultrasound-guided radial artery cannulation in neonates: a randomized controlled trial[J]. Anesth Analg, 2019, 129(1): 178-183. DOI: 10.1213/ANE.0000000000003445.
[193]
KerreyBT, RinderknechtAS, GeisGL, et al. Rapid sequence intubation for pediatric emergency patients: higher frequency of failed attempts and adverse effects found by video review[J]. Ann Emerg Med, 2012, 60(3): 251-259. DOI: 10.1016/j.annemergmed.2012.02.013.
[194]
HatchLD, GrubbPH, LeaAS, et al. Endotracheal intubation in neonates: a prospective study of adverse safety events in 162 infants[J]. J Pediatr, 2016, 168: 62-66.e6. DOI: 10.1016/j.jpeds.2015.09.077.
[195]
LinMJ, GurleyK, HoffmannB. Bedside ultrasound for tracheal tube verification in pediatric emergency department and ICU patients: a systematic review[J]. Pediatr Crit Care Med, 2016, 17(10): e469-e476. DOI: 10.1097/PCC.0000000000000907.
[196]
NealJT, KaplanSL, WoodfordAL, et al. The effect of bedside ultrasonographic skin marking on infant lumbar puncture success: a randomized controlled trial[J]. Ann Emerg Med, 2017, 69(5): 610-619.e1. DOI: 10.1016/j.annemergmed.2016.09.014.
[197]
GornM, KunkovS, CrainEF. Prospective investigation of a novel ultrasound-assisted lumbar puncture technique on infants in the pediatric emergency department[J]. Acad Emerg Med, 2017, 24(1): 6-12. DOI: 10.1111/acem.13099.
[198]
PittirutiM, CelentanoD, BaroneG, et al. A GAVeCeLT bundle for central venous catheterization in neonates and children: a prospective clinical study on 729 cases[J]. J Vasc Access, 2023, 24(6): 1477-1488. DOI: 10.1177/11297298221074472.
[199]
QuanZ, ZhangL, ZhouC, et al. Acoustic shadowing facilitates ultrasound-guided radial artery cannulation in young children[J]. Anesthesiology, 2019, 131(5): 1018-1024. DOI: 10.1097/ALN.0000000000002948.
[200]
YeP, TanY, YeM, et al. A novel method for ultrasound-guided radial artery cannulation in neonates by trainee anaesthesiologists: a randomised controlled trial[J]. Eur J Anaesthesiol, 2020, 37(2): 91-97. DOI: 10.1097/EJA.0000000000001089.
[201]
PillaiR, KumaranS, JeyaseelanL, et al. Usefulness of ultrasound-guided measurement of minimal transverse diameter of subglottic airway in determining the endotracheal tube size in children with congenital heart disease: a prospective observational study[J]. Ann Card Anaesth, 2018, 21(4): 382-387. DOI: 10.4103/aca.ACA_220_17.
[202]
TessaroMO, SalantEP, ArroyoAC, et al. Tracheal rapid ultrasound saline test (T.R.U.S.T.) for confirming correct endotracheal tube depth in children[J]. Resuscitation, 2015, 89: 8-12. DOI: 10.1016/j.resuscitation.2014.08.033.
[203]
AhnJH, KwonE, LeeSY, et al. Ultrasound-guided lung sliding sign to confirm optimal depth of tracheal tube insertion in young children[J]. Br J Anaesth, 2019, 123(3): 309-315. DOI: 10.1016/j.bja.2019.03.020.
[204]
HaaseR, HeinM, ThäleV, et al. Umbilical venous catheters-analysis of malpositioning over a 10-year period [J]. Z Geburtshilfe Neonatol, 2011, 215(1): 18-22. DOI: 10.1055/s-0031-1271739.
[205]
FlemingSE, KimJH. Ultrasound-guided umbilical catheter insertion in neonates[J]. J Perinatol, 2011, 31(5): 344-349. DOI: 10.1007/s12098-022-04295-w.
[206]
Guzmán-de la GarzaFJ, Laredo-FloresAD, Cárdenas-Del CastilloB, et al. Ultrasound-guided umbilical venous catheterisation: a cost-effectiveness analysis[J]. Pediatr (Engl Ed), 2020, 92(4): 215-221. DOI: 10.1016/j.anpedi.2019.04.005.
[207]
D′AndreaV, PronteraG, RubortoneSA, et al. Umbilical venous catheter update: a narrative review including ultrasound and training[J]. Front Pediatr, 2021, 9: 774705. DOI: 10.3389/fped.2021.774705.
[208]
GrimmA, TeschnerU, PorzeliusC, et al. Muscle ultrasound for early assessment of critical illness neuromyopathy in severe sepsis[J]. Crit Care, 2013, 17(5): R227. DOI: 10.1186/cc13050.
[209]
LeeZY, OngSP, NgCC, et al. Association between ultrasound quadriceps muscle status with premorbid functional status and 60-day mortality in mechanically ventilated critically ill patient: a single-center prospective observational study[J]. Clin Nutr, 2021, 40(3): 1338-1347. DOI: 10.1016/j.clnu.2020.08.022.
[210]
Hernández-SocorroCR, SaavedraP, López-FernándezJC, et al. Novel high-quality sonographic methods to diagnose muscle wasting in long-stay critically ill patients: shear wave elastography, superb microvascular imaging and contrast-enhanced ultrasound[J]. Nutrients, 2021, 13(7):2224. DOI: 10.3390/nu13072224.
[211]
DrakonakiEE, AllenGM, WilsonDJ. Ultrasound elastography for musculoskeletal applications[J]. Br J Radiol, 2012, 85(1019): 1435-1445. DOI: 10.1259/bjr/93042867.
[212]
Franco-SadudR, SchnobrichD, MathewsBK, et al. Recommendations on the use of ultrasound guidance for central and peripheral vascular access in adults: a position statement of the society of hospital medicine[J]. J Hosp Med, 2019, 14(9): E1-E22. DOI: 10.12788/jhm.3287.
[213]
AIUM practice parameter for the use of ultrasound to guide vascular access procedures[J]. J Ultrasound Med, 2019, 38(3): E4-E18. DOI: 10.1002/jum.14954.
[214]
BouazizH, ZetlaouiPJ, PierreS, et al. Guidelines on the use of ultrasound guidance for vascular access[J]. Anaesth Crit Care Pain Med, 2015, 34(1): 65-69. DOI: 10.1016/j.accpm.2015.01.004.
[215]
MahlerSA, WangH, LesterC, et al. Ultrasound-guided peripheral intravenous access in the emergency department using a modified Seldinger technique[J]. J Emerg Med, 2010, 39(3): 325-329. DOI: 10.1016/j.jemermed.2009.02.013.
[216]
向成林, 冯仁, 米元元, 等. 床旁超声引导外周静脉穿刺在ICU静脉穿刺困难患者中的应用[J]. 中国临床护理, 2019, 11(6): 516-518. DOI: 10.3969/j.issn.1674-3768.2019.06.016.
[217]
DarginJM, RebholzCM, LowensteinRA, et al. Ultrasonography-guided peripheral intravenous catheter survival in ED patients with difficult access[J]. Am J Emerg Med, 2010, 28(1): 1-7. DOI: 10.1016/j.ajem.2008.09.001.
[218]
BaumanM, BraudeD, CrandallC. Ultrasound-guidance vs. standard technique in difficult vascular access patients by ED technicians[J]. Am J Emerg Med, 2009, 27(2): 135-140. DOI: 10.1016/j.ajem.2008.02.005.
[219]
SchoenfeldE, ShokoohiH, BonifaceK. Ultrasound-guided peripheral intravenous access in the emergency department: patient-centered survey[J]. West J Emerg Med, 2011, 12(4): 475-477. DOI: 10.5811/westjem.2011.3.1920.
[220]
CarrPJ, HigginsNS, CookeML, et al. Tools, clinical prediction rules, and algorithms for the insertion of peripheral intravenous catheters in adult hospitalized patients: a systematic scoping review of literature[J]. J Hosp Med, 2017, 12(10): 851-858. DOI: 10.12788/jhm.2836.
[221]
JacobsonAF, WinslowEH. Variables influencing intravenous catheter insertion difficulty and failure: an analysis of 339 intravenous catheter insertions[J]. Heat Lung J Crit Care, 2005, 34(5): 345-359. DOI: 10.1016/j.hrtlng.2005.04.002.
[222]
程美萍, 周敏杰, 王红, 等. 静脉留置套管针穿刺留置失败原因分析[J]. 中国危重病急救医学, 2007, 19(8): 466.
[223]
孙建华, 刘大为, 王小亭, 等. 超声技术在重症护理领域中的应用进展[J]. 中华护理杂志, 2016, 51(6): 729-732. DOI: 10.3761/j.issn.0254-1769.2016.06.020.
[224]
郑红, 史南, 刘金涛,等. 超声引导下外周静脉留置导管技术在肥胖患者静脉治疗中的应用[J]. 中国临床护理, 2020, 12(3): 237-239.
[225]
ShokoohiH, BonifaceK, McCarthyM, et al. Ultrasound-guided peripheral intravenous access program is associated with a marked reduction in central venous catheter use in noncritically ill emergency department patiens[J].Ann Emerg Med, 2013, 61(2):198-203. DOI: 10.1016/j.annemergmed.2012.09.016.
[226]
StonePA, CampbellJE, AbuRahmaAF. Femoral pseudoaneurysms after percutaneous access[J]. J Vasc Surg, 2014, 60(5): 1359-1366. DOI: 10.1016/j.jvs.2014.07.035.
[227]
WittingMD, SchenkelSM, LawnerBJ, et al. Effects of vein width and depth on ultrasound-guided peripheral intravenous success rates[J]. J Emerg Med, 2010, 39(1): 70-75. DOI: 10.1016/j.jemermed.2009.01.003.
[228]
GottliebM, SundaramT, HolladayD, et al. Ultrasound-guided peripheral intravenous line placement: a narrative review of evidence-based best practices[J]. West J Emerg Med, 2017, 18(6): 1047-1054. DOI: 10.5811/westjem.2017.7.34610.
[229]
KalishJ, EslamiM, GillespieD, et al. Routine use of ultrasound guidance in femoral arterial access for peripheral vascular intervention decreases groin hematoma rates[J]. J Vasc Surg, 2015, 61(5): 1231-1238. DOI: 10.1016/j.jvs.2014.12.003.