查看原文
其他

6G发展概述

潘泊凡 中国保密协会科学技术分会 2024-01-09




导语

截至目前,第五代(5G)移动通信系统已在许多国家推出,5G用户数量已达到非常大的规模。目前是学术界和工业界将注意力转向下一代的合适时机。在这个十字路口,对当前技术状态的概述和对未来通信的展望无疑是令人感兴趣的。本文主要探究5G活跃在移动通信领域的前提下,6G是否有存在的必要。因此,本文重点是将5G与6G在技术要求上进行比较讨论,并总结了一些代表性机构和国家最先进的6G研究工作和活动,预测6G产生时的相关规范和标准化路线图,简单预测一些可能出现的技术,并介绍其原理、优势、挑战和开放的研究问题。本文旨在探究6G诞生后,对人们的日常生活会产生怎样的变化,尽量全面地描述6G系统各方面的全貌,激发人们对6G通信系统后续研究和开发的兴趣。




引言

移动通信系统是从美国和北欧诞生的第一代模拟蜂窝系统即1G网络。目前已经发展到第五代。2G的创新点在全球移动通信系统GSM;3G的创新点在码分多址(CDMA)的革命性技术,以WCDMA、CDMA2000和TD-SCDMA为代表;4G的创新点在通过多输入多输出(MIMO)和正交频分复用(OFDM)的天才组合。5G则将移动通信服务从人扩展到物,也从消费者扩展到垂直行业,从传统移动宽带到工业4.0、虚拟现实(VR)、物联网(IoT)和自动驾驶。目前,5G仍在世界各地部署,但学术界和工业界已经将注意力转移到6G系统,以满足未来2030年的信息和通信需求。虽然曾有人反对谈论6G[1],但其实关于下一代无线网络的几项开创性工作已经开始。2018年7月,国际电信联盟电信(ITU-T)标准化部门成立了一个名为“网络2030技术”的重点小组。该小组打算研究2030年及以后的网络能力[2],届时有望支持新的前瞻性场景,如全息型通信、无处不在的智能、触觉互联网、多感官体验和数字孪生。欧盟委员会发起赞助5G以外的研究活动,正如《地平线2020》(Horizon 2020)呼吁的那样——ICT-20 5G长期演进和ICT-52 5G以外智能连接——2020年初,一批关键6G技术的先锋研究项目启动。 欧盟委员会还宣布了加快对欧洲“千兆连接”(包括5G和6G)投资的战略,以塑造欧洲的数字未来[3]。2020年10月,下一代移动网络(NGMN)启动了新的“6G愿景和驱动因素”项目,旨在为全球6G活动提供早期和及时的指导。美国、中国、德国、日本和韩国等移动通信领域的其他传统主要参与者已经正式启动了6G研究。 




开发6G的关键驱动力

自2019年年中以来,商用5G移动网络已在全球铺开,并在一些国家达到了非常大的规模。例如,截止2020年底中国部署的5G基站数量超过50万个,服务于1亿多5G用户。按照每十年出现新一代的传统,现在是学术界和工业界开始探索5G继任者的时候了。然而,在迈向6G的道路上,我们遇到的第一个问题就是“6G是否真的需要? ”,或者说“5G是否已满足需求? ”,因此本文讨论开发6G的关键驱动力。下一代系统的发展不仅受到移动流量和移动订阅指数增长的推动,而且还受到即将出现的新的破坏性服务和应用的推动。此外,它还受到移动通信社会不断提高网络效率(即成本效率、能源效率、频谱效率和运营效率)的内在需求驱动。随着AI、THz和大规模卫星星座等先进技术的出现,通信网络能够朝着更强大、更高效的系统发展,以更好地满足当前服务的需求,并为提供迄今从未见过的破坏性服务打开了可能性。关键驱动力之一首先是移动流量的爆炸性增长。我们正处于一个前所未有的时代,大量智能产品、交互式服务和智能应用程序迅速涌现和发展,对移动通信提出了巨大的需求。可以预见,5G系统很难适应2030年及以后的巨大移动通信量。由于丰富的视频应用程序、增强的屏幕分辨率、机器对机器(M2M)通信、移动云服务等新技术应用激增,全球移动通信量将以爆炸性的方式持续增长,2030年将达到每月5016 EB,而2020年为每月62 EB。爱立信的一份报告[4]显示,2019年底全球移动通信量已达到每月33 EB,这证明了ITU-R估计的正确性。在过去十年中,由于移动宽带(MBB)的普及,智能手机和平板电脑的数量呈指数级增长。这一趋势将在21世纪20年代继续,因为智能手机和平板电脑的渗透率尚未饱和,特别是在发展中国家。与此同时,可穿戴电子设备和VR眼镜等新型用户终端迅速出现在市场上,并迅速被消费者采用。另一方面,随着MBB用户数量的增加,每个MBB用户的流量需求不断增加。这主要是因为Youtube、Netflix和最近的Tik Tok等移动视频服务的普及,以及移动设备屏幕分辨率的稳定提高。即将到来的移动流量爆炸性增长三分之二[4]来自于移动视频服务,并且移动视频服务将在未来更占主导地位。在一些发达国家,在2025年之前,丰富的视频服务推动了强劲的流量增长,由于增强现实(AR)和VR应用的渗透,长期增长浪潮将持续。另一个关键驱动力是潜在应用案例。随着新技术的出现和现有技术的不断发展,如全息、机器人、微电子、光电、人工智能和空间技术,移动网络中可以培育出许多前所未有的应用。为了强调6G的独特特性并定义6G的技术要求,主要列举一些6G的潜在应用案例,比如全息型通信(HTC),多感官体验和大众智能等等。全息型通信(HTC):与使用双眼视差的传统3D视频相比,真正的全息图可以尽可能自然地满足肉眼观察3D对象的所有视觉提示。随着近年来全息显示技术的显著进步,如微软的HoloLens[5],预计其应用将在未来十年成为现实。通过移动网络远程渲染高清全息图将带来真正的沉浸式体验。例如,全息远程呈现将允许远程参与者以全息图的形式投影到会议室,或者允许在线培训或教育的参与者与超现实的对象交互。然而,即使使用图像压缩,HTC也会导致每秒太比特量级的巨大带宽需求。除了考虑二维(2D)视频中的帧速率、分辨率和颜色深度外,全息图的质量还包括倾斜、角度和位置等体积数据[6]。HTC还需要超低延迟,以实现真正的沉浸感和跨大量相关流的高精度同步,从而重建全息图。多感官体验:人类有五种感官(视觉、听觉、触觉、嗅觉和味觉)来感知外部环境,而当前的通信只关注光学(文本、图像和视频)和声学(音频、语音和音乐)媒体。味觉和嗅觉的参与可以创造完全沉浸式的体验,这可能会带来一些新的服务,例如在食品和纹理行业[2]。此外,触觉通信的应用将发挥更重要的作用,并带来广泛的应用,如远程手术、远程控制和沉浸式游戏。这个应用案例对低延迟提出了严格的要求。大众智能:随着移动智能设备的普及以及机器人、智能汽车、无人机和VR眼镜等新型互联设备的出现,空中智能服务有望蓬勃发展。这些智能任务主要依赖于传统的面向计算的人工智能技术:计算机视觉、同时定位和映射(SLAM)、人脸和语音识别、自然语言处理、运动控制等。为了克服移动设备上严格的计算、存储、功率和隐私限制,6G网络将通过利用云、移动边缘和终端设备上的分布式计算资源,并培养高效通信的ML训练和干扰机制,以AI即服务的方式提供普遍智能[7]。例如,波士顿动力公司的Atlas等人形机器人[8]可以将SLAM的计算负载转移到边缘计算资源,以提高运动精度、延长电池寿命,并通过移除一些嵌入式计算组件变得更轻。除了计算密集型任务外,普适智能还促进了对时间敏感的AI任务,以避免在需要快速决策或对条件做出响应时云计算的延迟限制。 




6G技术要求

为了很好地支持2030年及以后的破坏性用例和应用,6G系统将提供极高的容量、可靠性、效率等。与[9]中规定的IMT-2020最低要求一样,使用了大量定量或定性KPI来指示6G的技术要求。大多数用于评估5G的KPI仍然适用于6G,而一些新的KPI将被引入新技术特征的评估。以下5个KPI可以被视为5G定义中的关键要求,简要介绍如下:峰值数据速率:在用户需求和THz通信等技术进步的推动下,预计将达到1Tbps,是5G的数十倍,5G的峰值速率为下行链路20 Gbps,上行链路10 Gbps。用户体验数据率:此数值定义为用户吞吐量的累积分布函数的第5百分位(5%)。换言之,用户可以在任何时间或位置获得至少95%的数据速率。衡量感知性能,尤其是在小区边缘,并反映网络设计的质量(如站点密度、架构、小区间优化等)更有意义。在密集城市的5G部署场景中,用户感知速率的目标是下行链路为100Mbps,上行链路为50Mbps。预计6G可以提供更高的1Gbps,是5G的10倍。延迟:延迟可以分为用户平面和控制平面延迟。前者是假设移动站处于活动状态,在无线网络中从源发送分组到目的地接收分组的时间延迟。在5G中,eMBB对用户平面延迟的最低要求为4ms,URLLC为1ms。预计该值将进一步降低到100µs甚至10µs。控制平面延迟是指从最“电池效率”状态(例如,空闲状态)到开始连续数据传输(例如,活动状态)的过渡时间。5G中控制平面的最小延迟应为10ms,预计6G中也会显著改善。除了空中延迟,往返或E2E延迟更有意义,但由于涉及大量网络实体,因此也很复杂。在6G中,E2E延迟可被视为一个整体。移动性:移动性意味着在提供可接受的体验质量(QoE)的情况下,由网络支持的移动站最高移动速度。为了支持高速列车的部署场景,5G支持的最高移动性为500公里/小时。在6G中,如果考虑商业航空系统,最大速度为1000公里/小时。连接密度是mMTC使用场景中用于评估的KPI。在无线资源数量有限的情况下,每平方公里具有宽松QoS的设备的最小数量为106台5G,预计将进一步提高10倍,达到107台每平方公里。 




可见光通信

VLC工作在400THz至800THz的频率范围内。与使用天线的较低THz范围的射频技术不同,VLC依靠照明源(尤其是发光二极管(LED))和图像传感器或光电二极管阵列来实现收发器。使用这些收发器,可以以低功耗(10 Mbps至100 Mbps时为100 mW)轻松实现高带宽,而不会产生电磁或无线电干扰。主流LED的高能效、长寿命(长达10年)和低成本,加上未经许可的频谱访问,使VLC成为对电池寿命和访问成本敏感的用例(如大规模物联网和无线传感器网络(WSN))有吸引力的解决方案。此外,VLC在一些非地面场景(如航空航天和水下)中也表现出比RF技术更好的传播性能,这可能是未来6G生态系统的重要组成部分。与RF相比,VLC中的MIMO增益非常脆弱,尤其是在室内场景中。这源于传播路径之间的高一致性,即低空间多样性。虽然通过使用间隔LED阵列可以在某种程度上降低这种一致性[10],但MIMO-VLC也受到接收机设计和实现的挑战:非成像接收机对其与发射机的空间对准极为敏感,而成像接收机因其高昂的价格而不适用于成本关键的使用情况。因此,尽管学术界自十年来一直在努力 [11],但到目前为止,还没有将MIMO方法标准化为IEEE 802.15.7的主流VLC物理层。因此,VLC中的波束形成与基于MIMO的RF波束形成不同,是通过称为空间光调制器(SLM)的特殊光学设备实现的。与毫米波和太赫兹技术类似,VLC也依赖LOS信道,因为它既没有穿透能力,也没有足够的衍射来绕过常见障碍物。同时,由于对相邻小区干扰和几乎无处不在的环境光噪声的担忧,VLC系统通常需要具有窄波束的定向天线。这些事实使得VLC系统对用户的位置和移动性高度敏感,导致对波束跟踪的高要求。另一方面,该功能也可以在某些使用场景中发挥优势,例如室内定位的精度更高[12],车辆通信的干扰更低[13]。VLC面临的另一个关键技术挑战是开放和不受监管(更具体地说,不可监管)的可见光频谱接入,这意味着与许可RF频带中的传统蜂窝系统相比,VLC系统的安全风险更高,需要更严格的安全要求。关于这一点,物理层安全性作为一种有前途的解决方案被广泛研究[14]。




总结与展望

本文对6G移动系统的驱动因素、需求、动力和促成因素进行了部分调查。可以得出的结论是,每十年新一代的传统演进不会终止于5G,考虑到学术界和工业界对发展6G的巨大热情,第一个6G网络预计将于2030年或更早部署。6G将以更具成本效益、能效和资源效率的方式,适应5G中引入的用例和应用,如物联网、工业4.0、虚拟现实和自动驾驶,并提供更好的体验质量。同时,它将实现5G无法支持的前所未有的用例,例如全息型通信、普及智能、全球无处不在的可连接性,以及我们尚无法想象的其他破坏性应用。从5G时代引入MTC和IoT开始,移动通信服务的趋势从仅以人为中心扩展到连接机器和事物,这一趋势将继续下去,而万物互联将在6G到来时实现。6G系统必须满足对延迟、可靠性、移动性和安全性的极为严格的要求,并大幅提高覆盖率、峰值数据速率、用户体验速率、系统容量和连接密度,与5G相比,KPI通常提高10至100倍。1926年,工程师兼发明家尼古拉·特斯拉(Nikola Tesla)表示,“当无线技术完美应用时,整个地球将变成一个巨大的大脑”。当6G到来时,这一预言将变成现实。




参考文献




[1] F. H. P . Fitzek and P . Seeling, “Why we should not talk about 6G,” arXiv, Mar. 2020

[2] “A blueprint of technology, applications and market drivers towards the year 2030 and beyond,” White Paper, ITU-T FG-NET-2030, May 2019

[3] “Shaping Europe’s digital future,” Communication-COM(2020)67, European Commission, Brussels, Belgium, Feb. 2020.

[4] “Mobile data traffic outlook,” Report, Ericsson, Jun. 2020.

[5] Microsoft HoloLens. [Online]. Available: https://www.microsoft.com/en-us/hololens/

[6]  A. Clemm et al., “Toward truly immersive holographic-type communication: Challenges and solutions,” IEEE Commun. Mag., vol. 58, no. 1,pp. 93–99, Jan. 2020.

[7] K. B. Letaief et al., “The roadmap to 6G: AI empowered wireless networks,” IEEE Commun. Mag., vol. 57, no. 8, pp. 84–90, Aug. 2019

[8]  Boston dynamics. [Online]. Available: https://www.bostondynamics.com/atlas

[9] Minimum requirements related to technical performance for IMT-2020 radio interface(s), ITU-R Std. M.2410-0, Nov. 2017.

[10] A. Al-Kinani et al., “Optical wireless communication channel measurements and models,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 1939–1962, 2018

[11] N. Huang et al., “Transceiver design for MIMO VLC systems with integerforcing receivers,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 66–77, 2018

[12] Y . Zhuang et al., “A survey of positioning systems using visible LED lights,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 1963–1988,2018.

[13] A. Memedi and F. Dressler, “V ehicular visible light communications: A survey,” IEEE Commun. Surveys Tuts., pp. 1–1, 2020.

[14] M. A. Arfaoui et al., “Physical layer security for visible light communication systems: A survey,” IEEE Commun. Surveys Tuts., vol. 22,no. 3, pp. 1887–1908, 2020.


翻译修改自:W. Jiang, B. Han, M. A. Habibi and H. D. Schotten, "The Road Towards 6G: A Comprehensive Survey"

中国保密协会

科学技术分会

长按扫码关注我们

作者:潘泊凡  国科大网安学院

责编:夏天天




2022年文章TOP5回顾




跨网攻击:突破物理隔离网络攻击技术简介智慧城市安全顶层设计的思考再谈数字取证技术发展面临的一些新问题低轨卫星互联网络的发展与挑战

LaserShark无接触式攻击植入技术简介




近期精彩文章回顾




基于区块链的网络安全技术概述

网络空间安全中的人工智能技术综述

物联网安全领域机器学习方法的研究与前景

工业物联网蜜罐、蜜网:一种重要的IIoT安全手段

AI遇上6G—机遇和挑战

继续滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存