领略数学文化的魅力 ——《数学文化与数学教育》读后感
本文为“数学文化阅读心得征文比赛”参赛作品,未经授权不得转载,点击图片查看征文比赛通知。
☞数学文化阅读心得征文比赛延期通知
领略数学文化的魅力
——《数学文化与数学教育》读后感
作者:郭英
作品编号:014
投稿时间:2019.6.25
读了这本书对我的感触很深,使我懂得了好多数学的道理,对我的学习有了更大的帮助,而数学史对于大学数学教学来说就是一种十分有效、不可或缺的工具。认识到数学史不但能有效的激发学生学习数学的兴趣,而且对于提高其数学方面的素质修养以及逻辑思维能力、启发文科学生的人格成长、发展其认知能力等都有十分重要的作用。
俗话说的好“冰冻三尺非一日之寒”。数学知识的发生和发展过程其实就是数学家与困难、问题的斗争史。数学本身不仅是一门科学,而且还是一种精神,一种探索精神。比如,微积分是由牛顿、莱布尼兹、欧拉、维尔斯特拉斯等多位大数学家前赴后继,历尽艰辛,历时千年才建立和发展完善的。了解数学理论知识建立的历史,不但可以使学生对所学知识有一个全局的完整的认识,而且可以使学生学会由易到难、由已知到未知,逐步的克服障碍,在探索中学习。
数学史可以构建数学与人文之间的桥梁,激发学生学好大学数学的兴趣 数学学科的抽象性、严密的逻辑性, 使得很多学生有畏难心理, 大学数学的学习也相应的恶化成枯燥无味的公式记忆和解题演练。荷兰数学家和教育家赖登塔尔就批评那种注重逻辑严密性、而没有丝毫历史感的教育乃是“把火热的发明变成了冷冰冰的美丽”。因此, 如何构建数学与人文之间的桥梁, 激发学生学习的兴趣就成了教师的首要任务。在数学的教学中,在学到相关数学知识的时候,适时的将数学知识与其在促进当时社会的发展联系起来,使学生认识到数学与人们的生活息息相关,其来源于生活、服务于生活。这将有助于树立学生对数学课正确的认识,增强学习兴趣。
在数学史上,数学概念的形成与演变,重要思想方法的确立与发展,重大理论的创立与变革等,无不体现唯物辩证法的核心思想——发展、运动与变化。比如,自从数学中引入了变量,运动就进入了数学。在高等数学中至始至终贯穿着动态的变量的思想,函数就是这一思想的具体体现。通过函数出现历史的介绍,就可以教会学生学会用变化、运动的观点看待事物、看待世界。在数学教学中融入数学史,既可以使学生认识到数学的价值,又有助于学生辩证唯物主义观点的培养。辩证唯物主义观点对于学生养成科学的思维方法、富有创新意识是非常重要的。
纵观整个数学发展史,可以说就是一种创造的演化史。在创造的过程中,更多的是理性思维的力量。比如,描述极限的ε,δ语言的出现,就是人类理性思维的美的体现,这套语言克服了以往对极限直观描述的随意性、抽象性。数学是人类思维所能达到的最严谨的理性。通过结合数学史的教学,可以更好的提高学生理性思维能力,从而促进学生的综合素质的提高。
牛顿曾经说过:“如果我看的更远些,那是因为我站在巨人的肩膀上”。从数学史的学习中,学生还可以认识到科学事业需要全人类的共同努力,需要对前人的许多知识批判性的继承,闭关锁国、闭门造车,只能造成自大和落后。在牛顿开创微积分以后,英国大陆数学发展的滞后就是典型的自我封闭的恶果。作为新时代的大学生, 应该有开阔的视野,敢于学习国内外的先进的科学知识为我所用。
总之,在数学教学中合理的融入数学史教育不仅有助于数学知识的讲授,而且有助于学生综合素质的提高。
请读者为作品014号打分
(打分结果将作为评奖的指标之一,也欢迎大家在留言区发表自己的看法)
我也想参赛↓↓↓
数学文化阅读心得征文比赛
传播数学,普及大众
长按识别二维码关注我们
欢迎把我们推荐给你身边的朋友
▼
▼▼▼点击阅读原文发现更多好玩的数学。