查看原文
其他

埃舍尔奇人奇画

新世纪智能 好玩的数学 2024-05-07


埃舍尔


的立体世界
















ESCHER















很多人看过埃舍尔的画,却不知道作者叫埃舍尔。让我们穿越时空回到1954年,地点为荷兰历史文化名城阿姆斯特丹,“国际数学协会”专门为埃舍尔举办了个人专题画展,这在现代艺术史上是绝无仅有的,这一纪录尚未被打破。







一、艺术家小传






埃舍尔(1898~1972),荷兰艺术家,自称为“图形艺术家”,专门从事于木版画和平版画。全名为毛里茨·科内流斯·埃舍尔(Maurits Cornelius Escher)。这个名字实在是太长了,不过,为了表示对卓越艺术家的尊重,至少得把全名认认真真地写出来一次。
1898年,埃舍尔出生于荷兰北部的吕伐登小城。他是家里的小儿子,非常受宠。
5岁时,全家搬到了阿纳姆,在那里上了高中,埃舍尔觉得学校的日子跟噩梦一样,只有每周两小时的艺术课能让这个未来的大艺术家开心一点。
埃舍尔的老爸想了一个折中的主意:让埃舍尔去学建筑!埃舍尔在1919年去了荷兰东部的哈勒姆,就读于建筑与艺术装饰学院。哈勒姆离阿姆斯特丹不远,是著名的郁金香集散地。这个充满花香的城市为未来的大师提供了成长的平台。
当埃舍尔遇到了版画教师梅斯基塔,他的好运在不知不觉中开始了,版画可是埃舍尔在中学时就很着迷的东西,他决定放弃建筑,改学版画。
这是一次成功的改行。从此,埃舍尔勤学苦练,在版画的田野里勇猛精进、刻苦耕耘,埃舍尔跟着梅斯基塔,练就了深厚的基本功。后来的作品表明,埃舍尔之所以能成为一位伟大的艺术家,正是建立在其精湛的技艺之上的。
1922年春天,埃舍尔走出校园,开始了他的艺术之旅,用画家的术语叫做外出写生,中国人讲究见多识广,所以要读万卷书,行万里路。文人边走边写,画家边走边画。埃舍尔离开了哈勒姆,来到了意大利,从中部到南部,在地中海周围转了个够。到了年底,就窝在意大利锡耶纳的一家小旅店里制作版画,一直到第二年春。
埃舍尔属于大名晚成的那一种,直到1950年,才从他自己的作品中获得了回报。
1956年,埃舍尔举办了他的第一次重要的画展,这个画展得到了《时代》杂志的好评,获得了世界范围的名望。在他的最热情的赞美者之中不乏许多数学家,他们认为在他的作品中数学的原则和思想得到了非同寻常的形象化,由于这个荷兰的艺术家没有受过中学以外的正式的数学训练,因而这一点尤其令人赞叹。
尽管埃舍尔不精于数学,但是他喜欢翻阅专业数学书——不是为了学习数学,只是想看看里面的插图。
就像我们为埃舍尔的作品着迷一样,埃舍尔也常被一些数学图形弄得魂不守舍,觉得其中蕴含着关于空间和图形的很多秘密,这些图形就被他改头换面画到作品中,比如几何多面体、莫比乌斯圈、超螺旋等。
由于埃舍尔描述了很多数学图形,很容易让数学家感到亲切——可以直接拿来作插图,埃舍尔正是从一个艺术家的角度,利用数学家的发现,发掘了美,创造了美。
他的很多作品令数学家吃惊,在埃舍尔的经历中,我们不能不提到下面这个故事:
1935年,埃舍尔举家迁往瑞士,但埃舍尔又不喜欢瑞士的自然气候,常常感到郁闷,一天夜里,埃舍尔仿佛听到了大海的声音,原来是妻子耶塔在梳头,这个奇怪的联想唤醒了埃舍尔旅行的欲望。第二天,他就给一家叫做亚得里亚的航运公司写信,提了一个奇怪的建议:公司允许他和耶塔搭乘该公司的货轮旅行,他把沿途创作的48幅版画送给公司,具体来说,是12种版画,每种印4份。当时这家公司没人知道埃舍尔是谁,甚至管理层中可能也没有人对版画有兴趣。更加奇怪的是,他们竟然同意了,如果亚得里亚公司保存着48幅中的任意一幅,都将获得远远超出两个人船票的价值。这个故事告诉我们,无论是在东方还是西方,天才的产生离不开产生天才的土壤。




二、作品欣赏




下面我们来欣赏一下埃舍尔笔下的立体世界。

01.瀑布PU BU

大多数国人第一次看到埃舍尔的作品是在20世纪80年代初期,当时的《读者文摘》(今《读者》)的中心插页上刊出了埃舍尔著名的《瀑布》,或许这应该是埃舍尔在中国的第一次大众传播。


不管科学家和艺术家怎么看埃舍尔,埃舍尔在公众之中已经获得了不可磨灭的地位。这或许是因为,公众并不在乎理论,只要能够打动他们,他们就喜欢。


埃舍尔说:“惊奇是大地之盐。”没有惊奇,这个世界将索然无味。


埃舍尔确实像他所希望的那样,给他的观众以巨大的惊奇,这些惊奇使他们感叹,使他们思考,使他们入迷!

这使得我们可以在各种场合看到埃舍尔的作品,他的作品被广泛地印在各种各样的纸张和布料上,制成各种实用工艺品,制成玩具,做成拼图,诺贝尔奖获得者杨振宁的《基本粒子发现简史》就是以埃舍尔的《骑士》作为封面的。


1961年的《瀑布》是埃舍尔最后期的奇异建筑式图画。他依据彭罗斯的三角原理,将整齐的立方物体堆砌在建筑物上。
彭罗斯台阶是著名的数学悖论之一,如下图所示,在这个神奇的图中,人一直在沿着台阶往上走,但是却一直在同一个水平面上打转转。

在电影票房大作《盗梦空间》中,曾两次出现了“彭罗斯楼梯”的场景。
《瀑布》被人称为最为非凡的又不可能实现的建筑作品。
有趣的是当你看这幅画中建筑的每一个部分时,找不出任何错误,但是将这幅画作为一个整体来看时,你就会发现一个问题,水是在一个平面上流动的,却又明明从一层流到三层形成瀑布再从三层降落的。还有,两个塔看起来在一个平面上,可是左边的一个有三层,而右边的只是两层?(底层不算)
这幅画的奇特之处在于挑战视觉,造成视觉错误,所以埃舍尔又被称为“错觉大师”。
难怪人们初看此画时往往有所忽略,再看时才会发现问题。
这便是一个很好的例子,证明埃舍尔的作品值得再看一次、两次,不,多次!
塔上方的那个立体图形可以说是埃舍尔的原创几何图形了,在这之前它并没有一个固定的名字,后来人们就把这个图形直接叫做“埃舍尔多面体”(Escher's solid)。

已经有学者为我们揭开了这个多面体的秘密:它是一个菱形十二面体(每个面都是菱形的十二面体)对应的星状多面体,即在菱形十二面体的每个面上“长”出一个四棱锥得到的图形。
更难想象的是,单用埃舍尔多面体,可以既无重复又无遗漏地填满整个空间!这是否可以看成是埃舍尔关于平面镶嵌的超级版本呢?
上面的结构可能看起来比较复杂,于是有许多埃舍尔的粉丝们设计了众多的简化版本,每一件都是不错的装饰品。


之后我们要学着折的“埃舍尔积木”,就是利用折纸来实现的。

原来埃舍尔的作品无处不在。不信到淘宝上看看,能够找到的模型不要太多呀!02.星星XING XING

在埃舍尔的作品《星星》(Stars)中,他更是把多面体之美表现到了极致。


好好琢磨一下,在这幅作品中,你能找到多少熟悉的立体几何中常见的模型呢?《星星》画中有相交立体、正八面体、四面体和正方体等,埃舍尔在多面体中画了变色龙,打破了我们通常的舒适的感性习惯,促使人们以新的眼光来看他作品中的事物,这当然是数学家之所以推崇埃舍尔作品的又一原因。


03.莫比乌斯圈MO BI WU SI QUAN



埃舍尔对莫比乌斯圈的创作,其实源于1960年一位英国数学家的建议,而那时,埃舍尔对莫比乌斯圈几乎一无所知。但此后,埃舍尔对于莫比乌斯圈的艺术化让他获得了拓扑学家的关注与好感。埃舍尔也对莫比乌斯圈情有独钟,曾创作过很多幅与莫比乌斯圈有关的版画。
而且,他还能不拘一格地对莫比乌斯圈进行拓展变形,创作出更具艺术美感的奇妙画卷。上文提到的《骑士》,就是其代表作之一。


之后我们要学着折的“变脸六边形”“魔三角”游戏,就是利用莫比乌斯圈的一些特性来实现的。



传播数学,普及大众

长按识别二维码关注我们

欢迎把我们推荐给你身边的朋友

▼点击阅读原文发现更多好玩的数学。

继续滑动看下一个
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存