因此,一个给定的实验系统通常有一个独特的测量、数字和/或概念协议。从一开始,系统的特殊性就一直是该领域的主要挑战[例如 12, 68, 96]。1977年诺贝尔奖得主菲利普·安德森(Philip Anderson)认为:“自旋玻璃的历史可能是我所知道的这句格言的最好例子,即一个真正的科学谜题是值得追寻到地球尽头的,即使不具有任何明显的实际重要性或智识上的魅力。”(The history of spin glass may be the best example I know of the dictum that a real scientific mystery is worth pursuing to the ends of the Earth for its own sake, independently of any obvious practical importance or intellectual glamour. )[3]
B. 解决复型的对称破缺问题
为了简便起见,我们可以把自旋玻璃看作是包含杂质的系统,或具有如下哈密顿量的自旋系统:
其中,Jik是非关联的高斯随机变量,均值为零,方差由于同时允许铁磁和反铁磁耦合,便会出现阻挫,因此我们预期会出现一个“凹凸起伏”的能量地形图和许多长寿命的亚稳态。在这个框架内,我们可以用启发式的术语来概括发展。Edwards和Anderson[24]考虑一种短程相互作用,Kik随着 i-k 距离的增大而迅速减小。重要的是,他们为自旋玻璃相构造了一个序参量,也就是自旋在其初始方向上的投影,使得我们可以忽略长程空间序而考虑长程时间序。因此,在等待很长一段时间后,如果序参量是有限的,就意味着自旋“记住”了它们最初的指向,在这个意义上也就意味着形成了玻璃态。此外,为了在Jik具有大量不同构型的宏观样本上进行平均,他们引入了所谓的“复型技巧”(replica trick),将配分函数复制 n 次,即,
显然,今年的获奖者作出的开创性贡献,有助于我们理解复杂物理系统的微观与宏观。他们的研究表明,如果没有对无序、噪声和可变性的正确解释,那么决定论就只是一种错觉。事实上,本届诺奖所认可的工作也部分反映了理查德·费曼(Richard Feynman,1965年诺贝尔奖获得者)的评论——相信怀疑是首要的,这不是我们认识能力的缺陷,而是认识的本质(Believed in the primacy of doubt, not as a blemish on our ability to know, but as the essence of knowing)[32]。
[1] Agarwal S, Wettlaufer, J S. 2018. Fluctuations in Arcmodels. Phil. Trans. R. Soc. A 376, 20170332.[2] Alley RB. 2000. Ice-core evidence of abrupt climate changes. Proc. Nat. Acad. Sci. USA 97, 1331-1334.[3] Anderson PW. 1988. Spin Glass I: A Scaling Law Res?cued. Phys. Today 41 526.[4] Archer D. and Pierrehumbert RP. (Editors). 2011. The Warming Papers: The Scientifific Foundation for the Climate Change Forecast. Wiley-Blackwell, Hoboken, NJ, 432 Pages.[5] Archer D. 2006. Global Warming: Understanding the Forecast, Wiley 208 pages[6] Arrhenius A. 1896. On the Inflfluence of Carbonic Acid in the Air upon the Temperature of the Ground, Phil. Mag. 41, 237-275.[7] Basak, S., Blanco, A., López, C. 2016. Large flfluctu?ations at the lasing threshold of solid-and liquid-state dye lasers. Sci. Rep. 6, 32134.[8] Batchelor GK. 1953. The Theory of Homogeneous Tur?bulence. Cambridge: Cambridge Univ. Press. 212 pg.[9] Behringer, RP. Chakraborty, B. 2019. The physics of jamming for granular materials: a Review. Rep. Prog. Phys. 82 012601.[10] Benzi R, Paladin G, Parisi G, Vulpiani A. 1984. On the multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A 17 3521-31.[11] Berner J, and 26 others. 2017. Stochastic Parameterization: Toward a New View of Weather and Climate Models. Bull. Am. Met. Soc. 98(3) 565-587.[12] Binder K, Young AP. 1986. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801.[13] Blandin A. 1978. Theories versus experiments in the spin glass systems. J. Phys. Coll. 39 C6, C6-1499-C6-1516.[14] Bray AJ, Moore MA. 1978. Replica symmetry breaking in spin-glass theories. Phys. Rev. Lett. 41,1068.[15] Budyko MI. 1969. The effffect of solar radiation variations on the climate of the Earth. Tellus 21, 611-619.[16] Charbonneau, P. Corwin, EI. Parisi, G. Zamponi, F. 2012. Universal Microstructure and Mechanical Stability of Jammed Packings Phys. Rev. Lett. 109, 205501.[17] Charbonneau, P. Kurchan, J. Parisi, G. Urbani, P. Zamponi, F. 2017. Glass and Jamming Transitions:From Exact Results to Finite Dimensional Descriptions. Annu. Rev. Cond. Matt. Phys. 8, 265.[18] Charney JG, Fj¨ortoft R, von Neumann J. 1950. Numer?ical Integration of the Barotropic Vorticity Equation. Tellus 2 (4), 237-254.[19] Charney JG, Arakawa A, Baker DJ, Bolin B, Dickenson RE, Goody RM, Leith CE, Stommel HM, Wunsch CI. Carbon Dioxide and Climate: A Scientifific Assessment.[20] Culina, J. Kravtsov, S. and Monahan, A.H. 2011. Stochastic Parameterization Schemes for Use in Realistic Climate Models, J. Atmos. Sci. 68, 284.[21] de Almeida JRL, Thouless DJ. 1978. Stability of the Sherrington-Kirkpatrick solution of a spin glass model, J. Phys. A 11, 983.[22] Doering CR. 2016: Mathematical Foundations of Stochastic Processes. 2015 Program of Study: Stochastic Processes in Atmospheric and Oceanic Dynamics, J. S. Wettlaufer and O. B¨uuhler, Eds., Woods Hole Oceanographic Institution Tech. Rep. WHOI-2016-05, 140, doi:10.1575/1912/8601.[23] Doering CR. 2020. Turning up the heat in turbulent thermal convection. Proc. Nat. Acad. Sci. U.S.A. 117, 9671-9673.[24] Edwards SF, Anderson PW. 1975. Theory of spin glasses. J. Physics F: Metal Physics, 5, 965.[25] EPICA community members. 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429 623-628.[26] Frankignoul C, Hasselmann K. 1977. Stochastic climate models, Part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 289305.[27] Gardiner, C. Stochastic Methods. Springer, Berlin Heidelberg, Germany, 4th edition, 2009.[28] Ghil M. 1976. Climate Stability for a Sellers-Type Model. J. Atmos. Sci. 33, 3-20.[29] Ghil M, Lucarini V. 2020. The Physics of Climate Variability and Climate Change. Rev. Mod. Phys. 92, 035002.[30] Ghofraniha N, Viola I, Di Maria F, Barbarella G, Gigli G, Leuzzi L, Conti C. 2015. Experimentalevidence of replica symmetry breaking in random lasers. Nat. Commun. 6, 6058 (See also Corrigendum in regards to Fig. 4).[31] Glantz MH, Katz RW, Nicholls N. 1991 Teleconnections linking worldwide climate anomalies. Vol. 535. Cambridge: Cambridge University Press. 535 pg.[32] Gleick J. 1992. Genius: The Life and Science of Richard Feynman, pp. 489 (Open Road Integr. Media, New York.)[33] Gomes, A., Raposo, E., Moura, A. et al. 2016. Observation of L´evy distribution and replica symmetry breaking in random lasers from a single set of measurements. Sci. Rep. 6, 27987.[34] González, I.R.R., Raposo, E.P., Macêdo, A.M.S. etal. 2018. Coexistence of turbulence-like and glassy be?haviours in a photonic system. Sci. Rep. 8, 17046.[35] Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY, 1983. 462 pg.[36] Halsey TC, Jensen MH, Kadanoffff LP, Procaccia I, Shraiman BI. 1986. Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141-51.[37] Hammond, AP. Corwin, EI. 2020. Experimental observation of the marginal glass phase in a colloidal glass. Proc. Nat. Acad. Sci. USA 117, 5714-5718.[38] Hansen J, Russell G, Rind D, Stone P, Lacis A, Lebedeffff S, Travis L. 1983. Effiffifficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev. 111, 609-662.[39] Hamilton K. 2020. At the dawn of global climate modeling: the strange case of the Leith atmosphere model. Hist. Geo Space Sci. 11, 93103.[40] Hasselmann K. 1966. Feynman diagrams and interaction rules of wave-wave scattering processes. Rev. Geophys. 4, 1-32.[41] Hasselmann K. 1967. Non-linear interactions treated by the methods of theoretical physics (with application to the generation of waves by wind). Proc. R. Soc. A 299, 77-100.[42] Hasselmann K. 1976. Stochastic climate models part I. Theory. Tellus 28(6), 473-485.[43] Hasselmann K. 1979. On the Signal-to-Noise Problem in Atmospheric Response Studies. In: Meteorology of Tropical Oceans. Ed. by D.B. Shaw. London: Roy Meteorol Soc., pp. 251 259.[44] Hasselmann K. 1993. Optimal Fingerprints for the Detection of Time-Dependent Climate Change. J. Climate 6, 1957-1971.[45] Hasselmann K. 1997. Multi-Pattern Fingerprint Method for Detection and Attribution of Climate Change. Clim. Dyn. 13, 601-611.[46] Hegerl G, Hasselmann K, Cubasch U, Mitchell JFB, Roeckner E, Voss R, Waszkewitz J. 1997. Multi-fifingerprint detection and attribution analysis of green?house gas, greenhouse gas-plus-aerosol and solar forced climate change. Clim. Dyn. 13, 613-634.[47] Hegerl G, North GR. 1997. Comparison of Statistically Optimal Approaches to Detecting Anthropogenic Climate Change. J. Clim 10, 1125.[48] Hegerl G, Zwiers F, Tebaldi C. 2011. Patterns of change: whose fifingerprint is seen in global warming? Environ. Res. Lett. 6, 044025.[49] Hegerl G, Zwiers F. 2011. Use of models in detection and attribution of climate change. WIREs Clim. Change 2 570-91.[50] Hopfifield JJ. 1982. Neural networks and physical systems with emergent collective computational properties. Proc. Nat. Acad. Sci. USA 79, 2554-2558.[51] Iyer KP, Scheel JD, Schumacher J, Sreenivasan KR. 2020. Classical 1/3 scaling of convection holds up to Ra =10^15 . Proc. Nat. Acad. Sci. USA 117, 7594-7598.[52] Jung T, Miller MJ, Palmer TN, Towers P, Wedi N, Achuthavarier D, Marx L. 2012. High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate and sea?sonal forecast skill. J. Climate 25, 3155-3172.[53] Kirkpatrick S, Gelatt CD, Vecchi MP. 1983. Optimization by Simulated Annealing. Science 220, 671-680.[54] Kirschvink JL. 1992. Late Proterozoic low-latitude global glaciation: The snowball Earth, in The Proterozoic Biosphere, edited by J. W. Schopf and C. Klein, pp. 51-52, Cambridge Univ. Press, New York.[55] Knutti R, Sedlacek J. 2013. Robustness and uncertain ties in the new CMIP5 climate model projections. Nature Climate Change 3, 369-373[56] Lorenz, EN. 1963. Deterministic nonperiodic flflow. J. Atmos. Sci. 20, 130–41.[57] Lorenz, EN. 1992. The slow manifold-What is it? J. Atmos. Sci. 49, 2449-2451.[58] Lyubovtseva YS, Gvishiani AD, Soloviev AA, Samokhina OO, Krasnoperov RI. 2020. Sixtiethanniversary of the International Geophysical Year (1957-2017) - contribution of the Soviet Union. Hist.Geo Space Sci. 11, 157171.[59] Majda AJ, Timofeyev I, and Vanden-Eijnden E. 2001. A mathematical framework for stochastic climate models. Commun. Pure Appl. Math. 54, 891-974.[60] Manabe, S, M¨oller, F. 1961. On the radiative equilib?rium and heat balance of the atmosphere. Mon. Wea. Rev. 89, 503–32.[61] Manabe, S, Strickler, RF. 1964. Thermal equilibrium of the atmosphere with a convective adjustment J. Atmos. Sci. 21, 361–85.[62] Manabe, S, Wetherald, RT. 1967. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259.[63] Manabe, S, Wetherald, RT. 1975. The Effffects of Dou?bling the CO2 Concentration on the climate of a General Circulation Model. J. Atmos. Sci. 32, 3–15.[64] Mandelbrot, BB. 1974. Intermittent turbulence in selfsimilar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331-58.[65] Mann, ME, Steinman, BA, and Miller, SK. 2020. Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nat Commun 11, 1–9.[66] Malkus, WVR. 2001. Borders of disorder. Stud. Appl. Math. 107, 325-336.[67] Meneveau, C. Sreenivasan, KR. 1987. Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 1424-27.[68] M´ezard M, Parisi G, Virasoro M. 1987. Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications. World Scientifific, Singapore. 476 pg.[69] M´ezard M, Parisi G, Sourlas N, Toulouse G, Virasoro M. 1984. Nature of the spin-glass phase. Phys. Rev. Lett. 52, 1156.[70] M´ezard, M. Parisi, G. and Zecchina, R. 2002. Ana?lytic and Algorithmic Solution of Random Satisfifiability Problems. Science 297, 812.[71] Mitchell JM Jr. 1966. Stochastic models of air-sea in?teraction and climatic flfluctuation. (Symp. on the Arctic Heat Budget and Atmospheric Circulation, Lake Arrowhead, Calif., 1966) Mem. RM-5233-NSF, The Rand Corp., Santa Monica.[72] Moon W, Agarwal S, Wettlaufer JS. 2018. Intrinsic Pink-Noise Multidecadal Global Climate Dynamics Mode. Phys. Rev. Lett. 121, 108701.[73] Moon W, Wettlaufer JS. 2019. Coupling functions in climate. Phil. Trans. R. Soc. A 377, 20190006.[74] Moura, A., et al. 2017. Replica Symmetry Breaking in the Photonic Ferromagneticlike Spontaneous Mode?Locking Phase of a Multimode Nd:YAG Laser, Phys. Rev. Lett. 119, 163902.[75] M¨oller, F. 1963. On the inflfluence of changes in the CO2 concentration in air on the radiation balance of the Earth’s surface and on the climate. J. Geophys. Res. 68, 3877–86.[76] Munk WH. 1960. Smoothing and persistence. J. Meteor. 17, 92-93.[77] Orszag SA. 1971. Galerkin approximations to flflows within slabs, spheres, and cylinders. Phys. Rev. Lett. 26, 1100-1103.[78] North GR. 1975. Theory of energy-balance climate models. J. Atmos. Sci. 32, 2033-43.[79] North GR. 1975. Analytical solution to a simple climate model with diffffusive heat transport. J. Atmos. Sci. 32 (11), 1301-07.[80] Palmer TN. 2001. A nonlinear dynamical perspective on model error: a proposal for nonlocal stochastic-dynamic parametrization in weather and climate prediction models. Q.J.R. Meteorol. Soc. 127, 279-304.[81] Palmer TN. 2017. The primacy of doubt: Evolution of numerical weather prediction from determinism to probability. J. Adv. Model. Earth Syst. 9(2), 730-734.[82] Parisi G. 1979. Toward a Mean Field Theory for Spin Glasses. Phys. Lett. A 73, 203.[83] Parisi G. 1979. Infifinite number of order parameters for spin-glasses Phys. Rev. Lett. 43, 1754.[84] Parisi G. 1980. Magnetic properties of spin glasses in a new mean fifield theory. J. Phys. A: Math. Gen. 13, 1887.[85] Parisi G. 1983. Order parameter for spin-glasses. Phys. Rev. Lett. 50, 1946.[86] Parisi G. 1988. Statistical Field Theory. (Addison?Wesley, Redwood City, CA. pp. 352)[87] Parisi G. 2005. Brownian motion Nature 433, 221.[88] Parisi G, Frisch U. 1985. On the singularity structure of fully developed turbulence. In Turbulence and Predictability in Geophysical Fluid Dynamics, ed. M Ghil, R Benzi, G Parisi, pp. 84-87. Amsterdam: North?Holland.[89] Parisi, G and Zamponi F. 2010. Mean-fifield theory of hard sphere glasses and jamming. Rev. Mod. Phys. 82 (1), 789.[90] Pierangeli, D., Tavani, A., Di Mei, F. et al. 2017. Obser?vation of replica symmetry breaking in disordered non?linear wave propagation. Nat Commun 8, 1501.[91] Pierrehumbert RT. 2011. Principles of Planetary Climate. Cambridge Univ. Press, Cambridge, pp. 684.[92] Pomeau, Y. The long and winding road. 2016. Nature Phys. 12, 198-199.[93] Rainone, C. Urbani, P. 2016. Following the evolution of glassy states under external perturbations: the full replica symmetry breaking solution. J. Stat. Mech. Th. & Exp. 053302.[94] Rawlins F, Ballard SP, Bovis KJ, Clayton AM, Li D, Inverarity GW, Payne TJ. 2007. The Met Offiffiffice global four-dimensional variational data assimilation scheme. Q. J. Royal Meteorol. Soc. 133, 347-362.[95] Rissone, P. Corwin, EI. Parisi, G. 2021. Long-Range Anomalous Decay of the Correlation in Jammed Packings. Phys. Rev. Lett. 127, 038001.[96] Read N. 2014. Short-range Ising spin glasses: The metastate interpretation of replica symmetry breaking. Phys. Rev. E 90 032142.[97] Saltzman B. 1962. Finite amplitude free convection as an initial value problem-I. J. Atmos. Sci. 19, 329-341.[98] Santer, BD et al., 2019. Celebrating the anniversary of three key events in climate change science. Nature Clim. Change 9, 180182.[99] Sarkar, A., Shivakiran Bhaktha, B.N.; Andreasen, J. 2020. Replica Symmetry Breaking in a Weakly Scattering Optoflfluidic Random Laser. Sci. Rep. 10, 2628.[100] Schrag DP, Berner RA, Hoffffman PF, Halverson GP. 2002. On the initiation of a snowball Earth, Geochem. Geophys. Geosyst. 3(6), doi:10.1029/2001GC00219.[101] Sellers WD. 1969. A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System. J. Appl. Meteor. 8, 392-400.[102] Sherrington, D. and Kirkpatrick, S. 1975. Solvable Model of a Spin-Glass. Phys. Rev. Lett. 35, 1792.[103] Strogatz, S.H. Nonlinear Dynamics and Chaos. West?view Press, 2000. 512 pg.[104] Sreenivasan, KR. Antonia, RA. 1997. The phenomenology of small scale turbulence. Annu. Rev. Fluid Mech. 29, 435-72.[105] Temam R. Infifinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York, NY, 1997.[106] Thouless DJ, Anderson PW, Palmer RG. 1977. Solution of ‘Solvable model of a spin glass’. Phil. Mag. A 35, 593.[107] Thouless, DJ. 1988. Phys. Today 41 (12), 110.[108] Tommasi, F., Ignesti, E., Lepri, S., Cavalieri, S. 2016. Robustness of replica symmetry breaking phenomenology in random laser. Sci. Rep. 6, 37113.[109] Tyndall J. 1861. On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction. Philosophical Magazine Series 4 22,169-194; 273-285.[110] Untersteiner N. 2009. International Geophysical Year, 1957-1958: Drifting Station Alpha Documen?tary Film, National Snow and Ice Data Center, doi.org/10.7265/N5MK69TW or nsidc.org/data/g02184.[111] Wettlaufer, JS. 2016. Editorial. Climate Science: An Invitation for Physicists. Phys. Rev. Lett. 116, 150002.[112] Wiin-Nielsen A. 1991. The birth of numerical weather prediction. Tellus A 43 (4), 36-52.[113] Wunsch, C. Modern Observational Physical Oceanography: Understanding the Global Ocean (Princeton University Press, Princeton, NJ, 2015).[114] The founders of this fifield are all now deceased. In the 50’s Stommel and Veronis began collaborating at the IAS within the von Neumann and Charney project, but their ultimate approach was to understand detailed pro?cesses rather than to study forecasting. A GFD school began in 1959: “with the aim of introducing a then relatively new topic in mathematical physics, geophysical flfluid dynamics, to graduate students in physical sciences. It has been held each summer since and promotes an exchange of ideas among the many distinct fifields that share a common interest in the nonlinear dy?namics of rotating, stratifified flfluids. These fifields include classical flfluid dynamics, physical oceanography, meteorology, astrophysics, planetary atmospheres, geological flfluid dynamics, hydromagnetics, and applied math?ematics.” (https://gfd.whoi.edu)[115] It is worth emphasizing that before the availability of computing, progress in explaining observations or making predictions in all of the physical sciences, including climate science, was made using pencil and paper calculations. Computers changed this completely and in an era precisely during which both theory and numerical modeling in this fifield were developing. For this reason, a conceptual bifurcation occurred in which “numerical realism” and “simple” theory began to evolve separately and the generality of the latter was largely viewed as a handicap rather than a great benefifit, whereas numerical climate models are only specififically relevant to the system under study [111]. After roughly half a century the theory of climate is now demonstrating its realism as well as having touched many fifields in dynamical systems along the way. This is due to the fact that nonlinear systems create emergent phenomena whereas GCMs act in a variety of ways as a fifilters of high frequency processes.