美国 COVID-19 趋势和影响调查:持续实时测量 COVID-19 症状、风险、保护行为、测试和疫苗接种 论文题目:The US COVID-19 Trends and Impact Survey: Continuous real-time measurement of COVID-19 symptoms, risks, protective behaviors, testing, and vaccination 论文地址:https://www.pnas.org/content/118/51/e2111454118
Salomon等人关注美国CTIS (COVID-19 Trends and Impact Survey),一个德尔菲研究组织与Facebook合作运营的在线调查项目。CTIS是针对大流行及其对人们影响的一个非常实用且丰富的数据来源,部分反映在COVIDcast 资源库的指标中。根据数据使用协议,研究人员可以获得个人、匿名调查回答的完整数据集。改文章提出了描述性分析,反映了CTIS作为公共卫生报告的重要补充的独特价值,特别是作为衡量有关行为、态度、经济影响和其他传统公共卫生流未涵盖的主题的关键信息的重要工具。
第四篇:如何开展国际合作?
通过从 Facebook 用户群中抽样的在线调查对 COVID-19 大流行的影响进行全球监测论文题目:Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base 论文地址:https://www.pnas.org/content/118/51/e2111455118
1 M. Biggerstaff et al.; Influenza Forecasting Contest Working Group, Results from the centers for disease control and prevention’s predict the 2013–2014 Influenza Season Challenge. BMC Infect. Dis. 16, 357 (2016).2 M. Biggerstaff et al., Results from the second year of a collaborative effort to forecast influenza seasons in the United States. Epidemics 24, 26–33 (2018).3 N. G. Reich et al., A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States. Proc. Natl. Acad. Sci. U.S.A. 116,3146–3154 (2019).4 M. A. Johansson et al., An open challenge to advance probabilistic forecasting for dengue epidemics. Proc. Natl. Acad. Sci. U.S.A. 116, 24268–24274 (2019).5 S. Y. Del Valle et al., Summary results of the 2014-2015 DARPA Chikungunya challenge. BMC Infect. Dis. 18, 245 (2018).6 M. Ajelli et al., The RAPIDD Ebola forecasting challenge: Model description and synthetic data generation. Epidemics 22, 3–12 (2018).7 C. Viboud et al.; RAPIDD Ebola Forecasting Challenge group, The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. Epidemics 22, 13–21 (2018).8 Centers for Disease Control and Prevention, FluSight: Flu forecasting (2020). https://www.cdc.gov/flu/weekly/flusight/. Accessed 18 October 2021.9 J. Ginsberg et al., Detecting influenza epidemics using search engine query data. Nature 457, 1012–1014 (2009).10 J. S. Brownstein, C. C. Freifeld, L. C. Madoff, Digital disease detection—Harnessing the Web for public health surveillance. N. Engl. J. Med. 360, 2153–2157 (2009).11 M. Salathé et al., Digital epidemiology. PLoS Comput. Biol. 8, e1002616 (2012).12 T. A. Kass-Hout, H. Alhinnawi, Social media in public health. Br. Med. Bull. 108, 5–24 (2013).13 M. Santillana et al., Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput. Biol. 11, e1004513 (2015).14 M. J. Paul, M. Dredze, Social monitoring for public health. Synth. Lect. Inf. Concepts Retr. Serv. 9, 1–183 (2017).15 T. A. Kass-Hout, X. Zhang, Biosurveillance: Methods and Case Studies (CRC Press, 2011).16 S. J. Carlson et al., Flutracking weekly online community survey of influenza-like illness annual report 2011 and 2012. Commun. Dis. Intell. Q. Rep. 37, E398–E406 (2013).17 C. Viboud et al., Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US. PLoS One 9, e102429 (2014).18 M. S. Smolinski et al., Flu near you: Crowdsourced symptom reporting spanning 2 influenza seasons. Am. J. Public Health 105, 2124–2130 (2015).19 M. Santillana et al., Cloud-based electronic health records for real-time, region-specific influenza surveillance. Sci. Rep. 6, 25732 (2016).20 V. Charu et al., Human mobility and the spatial transmission of influenza in the United States. PLoS Comput. Biol. 13, e1005382 (2017).21 C. E. Koppeschaar et al., Influenzanet: Citizens among 10 countries collaborating to monitor influenza in europe. JMIR Public Health Surveill. 3, e66 (2017).22 C. Y. Yang, R. J. Chen, W. L. Chou, Y. J. Lee, Y. S. Lo, An integrated influenza surveillance framework based on national influenza-like illness incidence and multiple hospital electronic medical records for early prediction of influenza epidemics: Design and evaluation. J. Med. Internet Res. 21, e12341 (2019).23 S. I. Leuba, R. Yaesoubi, M. Antillon, T. Cohen, C. Zimmer, Tracking and predicting U.S. influenza activity with a real-time surveillance network. PLoS Comput. Biol. 16, e1008180 (2020).24 J. M. Radin, N. E. Wineinger, E. J. Topol, S. R. Steinhubl, Harnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: A population-based study. Lancet Digit. Health 2, e85–e93 (2020).25 S. F. Ackley et al., Assessing the utility of a smart thermometer and mobile application as a surveillance tool for influenza and influenza-like illness. Health Informatics J. 26, 2148–2158 (2020).26 A. Reinhart et al., An open repository of real-time COVID-19 indicators. Proc. Natl. Acad. Sci. U.S.A. 118, e2111452118 (2021).27 D. J. McDonald et al., Can auxiliary indicators improve COVID-19 forecasting and hotspot prediction? Proc. Natl. Acad. Sci. U.S.A. 118, e2111453118 (2021).28 J. A. Salomon et al., The US COVID-19 Trends and Impact Survey: Continuous real-time measurement of COVID-19 symptoms, risks, protective behaviors, testing, and vaccination. Proc. Natl. Acad. Sci. U.S.A. 118, e2111454118 (2021).29 C. M. Astley et al., Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base. Proc. Natl. Acad. Sci. U.S.A. 118, e2111455118 (2021).30 Reich Lab, The COVID-19 Forecast Hub (2020). https://covid19forecasthub.org. Accessed 18 October 2021.31 S. Simon, Inconsistent reporting practices hampered our ability to analyze COVID-19 data. Here are three common problems we identified (COVID Tracking Project (2021). https://covidtracking.com/analysis-updates/three-covid-19-data-problems. Accessed 18 October 2021.32 J. E. Wennberg, M. M. Cooper, The Dartmouth Atlas of Health Care in the United States (American Hospital Publishing, Chicago, IL, 1998).33 National Center for Health Statistics, Provisional death counts for coronavirus disease 2019 (COVID-19) (2021). https://www.cdc.gov/nchs/nvss/vsrr/ COVID19/index.htm. Accessed 18 October 2021.34 N. Fillmore et al., The COVID-19 hospitalization metric in the pre- and post-vaccination eras as a measure of pandemic severity: A retrospective, nationwide cohort study. Research Square [Preprint] (2021). https://www.researchsquare.com/article/rs-898254/v1 (Accessed 18 October 2021).35 S. Arvisais-Anhalt et al., What the coronavirus disease 2019 (COVID-19) pandemic has reinforced: The need for accurate data. Clin. Infect. Dis. 72, 920–923 (2021).36 E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).37 National Center for Health Statistics, Pneumonia and influenza mortality surveillance from the national center for health statistics mortality surveillance system (2021). https://gis.cdc.gov/grasp/fluview/mortality.html. Accessed 18 October 2021.38 A. Bilinski, E. Emanuel, J. A. Salomon, A. Venkataramani, Better late than never: Trends in COVID-19 infection rates, risk perceptions, and behavioral responses in the USA. J. Gen. Intern. Med. 36, 1825–1828 (2021).39 Centers for Disease Control and Prevention, CDC Stands Up New Disease Forecasting Center: Media statement for immediate release: Wednesday, August 18, 2021 (2021). https://stacks.cdc.gov/view/cdc/108945. Accessed 18 October 2021.40 E. J. Williamson et al., OpenSAFELY: Factors associated with COVID-19 death in 17 million patients. Nature 584, 430–436 (2020).41 HL7 Community, Welcome to FHIR (2021). https://www.hl7.org/fhir/. Accessed 18 October 2021.42 N. G. Reich, R. J. Tibshirani, E. L. Ray, R. Rosenfeld, On the predictability of COVID-19 (2021). https://forecasters.org/blog/2021/09/28/on-the-predictability-of[1]covid-19/. Accessed 18 October 2021.43 H. Jalal, K. Lee, D. S. Burke, Prominent spatiotemporal waves of COVID-19 incidence in the United States: Implications for causality, forecasting, and control. medRxiv [Preprint] (2021). https://doi.org/10.1101/2021.06.29.21259726 (Accessed 18 October 2021).