智能的定义与度量 • Wang, Pei. 2019. “On Defining Artificial Intelligence.” Journal of Artificial General Intelligence 10 (2): 1–37. doi:10.2478/jagi-2019-0002.推荐原因:定义智能很大程度上是一个哲学问题,这篇文章严谨地讨论和给出了智能的定义,并抓住了智能的重要特点。某篇调研表明在众多定义中该定义获得了最高的认可度。 • Wang, Pei, and Ben Goertzel. "Introduction: Aspects of artificial general intelligence." Proceedings of the 2007 conference on Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. 2007推荐原因:该文章是通用人工智能(AGI)一词的“缘起”,说明了AGI一词为什么、如何被发明。 • Chollet, François. 2019. “The Measure of Intelligence.” Cornell University - arXiv.推荐原因:该文章比较全面地分析智能现象的本质特征,据此提出智能的度量方法,并给出完整的数学表达。 • Peng, Yujia, et al. "The Tong Test: Evaluating Artificial General Intelligence Through Dynamic Embodied Physical and Social Interactions." Engineering (2023).推荐原因:北京通用人工智能研究院等机构关于度量AGI的最新工作。 • Xu, Bowen, and Quansheng Ren. "Artificial Open World for Evaluating AGI: A Conceptual Design." International Conference on Artificial General Intelligence. Cham: Springer International Publishing, 2022.推荐原因:AGI领域中关于度量AGI的最新工作之一,探讨了度量AGI的关键因素,即排除开发者经验的介入,并据此提出了度量AGI的方法。 智能的原理 • Ma, Yi, Doris Tsao, and Heung-Yeung Shum. n.d. “On the Principles of Parsimony and Self-Consistency for the Emergence of Intelligence.”推荐原因:计算机科学和神经科学领域的顶级研究者的交叉工作,总结、分析并部分验证了智能涌现的两个底层原理:简约、自洽 • James S. Albus. “Outline for a Theory of Intelligence” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 3, (1991)推荐原因:完整的构建一个关于智能的模型和理论 • Y. Yue, "A World-Self Model Towards Understanding Intelligence," in IEEE Access, vol. 10, pp. 63034-63048, 2022, doi: 10.1109/ACCESS.2022.3182389.推荐原因:将世界模型和自我模型相结合,分析智能的四个本质构成要素,并构建一个基于信息压缩和概念网络的智能的数学模型Ilya的Talk "An observation on Generalization"推荐原因:从算法信息论和信息压缩的角度解释了从自监督学习中涌现出泛化能力的原因 大语言模型与信息世界的智能 • Bommasani, Rishi, DrewA. Hudson, Ehsan Adeli, RussB. Altman, Simran Arora, Sydneyvon Arx, MichaelS. Bernstein, et al. 2021. “On the Opportunities and Risks of Foundation Models.” Cornell University - arXiv.推荐原因:系统性地总结了近些年深度学习领域新出现的以基础模型为代表的新范式并对多个与智能相关的话题进行了深入的讨论 • Park, JoonSung, JosephC. O’Brien, CarrieJ. Cai, MeredithRingel Morris, Percy Liang, and MichaelS. Bernstein. 2023. “Generative Agents: Interactive Simulacra of Human Behavior.”推荐原因:第一次展示了利用大语言模型在多智能体环境中能够自发涌现出的复杂社交行为 • Dissecting Recall of Factual Associations in Auto-Regressive Language Models, https://arxiv.org/abs/2304.14767v1推荐原因:对自回归大语言模型中的神经元与事实间的对应关系进行分析 • Finding Neurons in a Haystack: Case Studies with Sparse Probing, https://arxiv.org/abs/2305.01610v2推荐原因:深入神经网络的细节,挖掘神经元表达知识的具体方式 • Huang, Shaohan, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, Tengchao Lv, et al. 2023. “Language Is Not All You Need: Aligning Perception with Language Models.”推荐原因:面向整合语言、多模态感知、行为、世界建模,本文的KOSMOS-1是多模态大语言模型的代表性工作。 • Meta-Transformer: A Unified Framework for Multimodal Learning, https://arxiv.org/pdf/2307.10802推荐原因:刚出来不久的多模态学习的工作,也很有代表性 感知与具身智能 • Ha, David, and Jürgen Schmidhuber. 2018. “World Models.” Cornell University - arXiv. (RL approach 强化学习视角)推荐原因:用简单易懂且深刻的论述和方法指出学习世界模型对解决具身智能问题的重要性,相比于强化学习领域提出的其他很多复杂的框架和方法,这篇文章的思想更加符合如非必要勿增实体的原则,更加触及问题的本质 • LeCun, Yann. "A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27." Open Review 62 (2022).推荐原因:这篇文章传递了深度学习的奠基人之一Yann Lecun对于实现通用人工智能方法的深入思考,强调了世界模型,基于能量的模型架构和自监督学习的潜力 • Sutton, Richard. "The bitter lesson." Incomplete Ideas (blog) 13.1 (2019).推荐原因:这篇博客文章是强化学习的奠基人Richard Sutton 基于其数十年的科研经验总结出的发人深省的思考,他指出真正能够规模化地提高深度学习的方法并不是通过对具体问题提出更好的归纳偏置来优化神经网络架构,而是算力和搜索;实现通用人工智能并不应该靠研究者把自己对问题的知识 hard-code 进算法,而是应该设计能使机器自己学到这些知识的算法。 • Wang, Guanzhi, et al. "Voyager: An open-ended embodied agent with large language models." arXiv preprint arXiv:2305.16291 (2023).推荐原因:第一次展示了利用大语言模型可以不需要目标函数和训练,在复杂的开放式环境中通过与环境的交互和反馈不断提升技能,并达到人类水平的智能体 • Eric Jang, "How Can We Make Robotics More like Generative Modeling?" (blog, https://evjang.com/2022/07/23/robotics-generative.html)推荐原因:这篇博客文章指出了过去几年具身智能领域主流的模仿学习和强化学习方法的根本性缺陷,并极具前瞻性地提出了借鉴语言模型领域的范式来解决通用具身智能的构想。 • Zador, Anthony, et al. "Catalyzing next-generation artificial intelligence through neuroai." Nature communications 14.1 (2023): 1597.推荐原因:指出了目前的深度神经网络与自然界中的智能体相比最显著的缺乏灵活性和适应变化能力的局限性,据此提出具身图灵测试,并提出对神经科学的深入研究将揭示智能现象底层原理,从而极大地推进具身智能发展的观点 多视角下的智能 • Principle (NARS): Wang, Pei. "Intelligence: From definition to design." International Workshop on Self-Supervised Learning. PMLR, 2022. (代表性项目-1)推荐原因:NARS是AGI领域中的代表性项目之一,旨在研究“原则”上与人相似的智能系统。NARS是基于逻辑的系统,但超越了传统的符号主义,且拥有坚实的哲学和理论基础。 • Function (ACT-R/Sigma/Soar): Laird, John E., Christian Lebiere, and Paul S. Rosenbloom. "A standard model of the mind: Toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics." Ai Magazine 38.4 (2017): 13-26. (代表性项目-2)推荐原因:ACT-R/Sigma/Soar三者都是AGI领域中的代表性项目,旨在研究认知“功能”上与人相似的系统。该文章结合了这三个工作,并提出“认知的标准模型”。通过此文章可以了解从认知的角度研究的AGI的基本特征。 • Capability (Cyc): Lenat, Douglas B. "CYC: A large-scale investment in knowledge infrastructure." Communications of the ACM 38.11 (1995): 33-38. (代表性项目-3)推荐原因:是比较老的AGI领域代表性项目之一,旨在研究问题求解“能力”上与人相似的系统。尽管其中有些观点略显过时,但仍有了解的价值。 • Structure (HTM): Hole, Kjell Jørgen, and Subutai Ahmad. "A thousand brains: toward biologically constrained AI." SN Applied Sciences 3.8 (2021): 743. (代表性项目-4)推荐原因:HTM/“千脑智能”是AGI领域的代表性项目之一,旨在研究“结构”与人脑相似的系统。该文章是对该路线的综合阐述。说明:GPT-4也是代表性项目之一,旨在研究“行为”上与人相似的系统,但在前面的话题中已经有详细讨论 ,因此此处不再重复。 • Friston, Karl. 2010. “The Free-Energy Principle: A Unified Brain Theory?” Nature Reviews Neuroscience, January, 127–38. doi:10.1038/nrn2787. (Neuroscience approach 神经科学视角)推荐原因:提出了最小自由能原理作为大脑感知世界和规划的内在机理的假说,将感知和规划统一在同一个普适的数学框架下,具有启发性。 • Robert J. Sternberg. “Human Intelligence: The Model Is the Message” Science (1985): pp. 1111-1118推荐原因:心理学层面的智能原理分析,通过内部世界、外部世界、经历的结合来理解智能 • JOHNSON, W, and T BOUCHARDJR. 2005. “The Structure of Human Intelligence: It Is Verbal, Perceptual, and Image Rotation (VPR), Not Fluid and Crystallized.” Intelligence 33 (4): 393–416. doi:10.1016/j.intell.2004.12.002.推荐原因:认知科学视角下的智能 • Yuan, Yang. "A Categorical Framework of General Intelligence." arXiv preprint arXiv:2303.04571 (2023). 数学(范畴论)视角推荐原因:提出了一种范畴论框架下对通用智能的定义,为理解机器是否能具有自我意识和同理心,如何表征复杂场景,如何理解监督/自监督学习等基本问题提供了一个统一的视角,同时对解决人工智能安全性问题有重要指导意义。 • Artificial Social Intelligence: A Comparative and Holistic View https://www.sciopen.com/article/10.26599/AIR.2022.9150010推荐原因:社会智能与多智能体交互视角下的智能 • Generative Agents: Interactive Simulacra of Human Behavior https://arxiv.org/abs/2304.03442 https://github.com/mkturkcan/generative-agents推荐原因:基于大语言模型生成的智能体的交互行为与社会智能,著名的“斯坦福小镇”的原文 对齐技术与AGI安全性 • Ngo, Richard. "The alignment problem from a deep learning perspective." arXiv preprint arXiv:2209.00626 (2022).推荐原因:较为全面且严谨地论述了基于深度学习技术的人工智能模型将面临的对齐问题及其挑战,如reward-hacking,misgeneralized internal goal,power-seeking等,具有前瞻性和启发性。 • Shah, Rohin, et al. "Goal misgeneralization: Why correct specifications aren't enough for correct goals." arXiv preprint arXiv:2210.01790 (2022).推荐原因:详细论述了基于强化学习的对齐技术面临的挑战:即使其目标函数与人类的意图正确对齐,仍会由于人工智能体错误的泛化导致其行为难以对齐。 • Casper, Stephen, et al. "Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback." arXiv preprint arXiv:2307.15217 (2023).推荐原因:全面而详细地论述了目前业界最广泛应用的RLHF对齐技术存在的缺陷,对人工智能安全性和对齐技术未来的研究方向提供了指导。 • Hendrycks, Dan, and Mantas Mazeika. "X-risk analysis for ai research." arXiv preprint arXiv:2206.05862 (2022).推荐原因:总结了人工智能系统造成生存性风险的论据,对相关领域研究者具有重要的指导意义。 • AGI safety fundamentals: alignment course. https://course.aisafetyfundamentals.com/alignment推荐原因:人工智能安全性领域具有代表性的课程,系统而全面地介绍了对齐领域相关的研究问题及其面临的挑战。 其他资料
• 李熙(AIXI) Legg, Shane, and Marcus Hutter. "Universal intelligence: A definition of machine intelligence." Minds and machines 17 (2007): 391-444.
• Russell, Stuart, and Peter Norvig. 2013. “Artificial Intelligence: A Modern Approach.” Choice Reviews Online, January, 33-1577-33–1577. doi:10.5860/choice.33-1577.
• Gottfredson, LindaS. 1997. “Mainstream Science on Intelligence.” Intelligence.
• Scheibel, ArnoldB., and J.William Schopf. 1997. “The Origin and Evolution of Intelligence.”
• The nature of intelligence, L. L. Thurstone, 1923