查看原文
其他

一题多解79:双变元最值问题

解题数学学习的一个核心内容和一种最基本的活动形式,为什么要怎样解题?怎样提高解题能力?这些问题一直是我们数学教师、学生、数学爱好者在思考的问题。

解数学题最根本的途径是“化难为易,化繁为简,化未知为已知”,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变为一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。 

    提高数学解题能力是一长期复杂的过程,它与学生的学习目的,学习态度,学习方法密切相关,也与教师的教学思想,教学态度,教学能力,教学方法,知识水平密切相关。


已知变量 都在 上变化,则 的取值范围是_______.

分析与解 法一 根据题意,有其中 的取值范围是 .考虑几何意义和图形的对称性,有的取值范围是射线 上的点到单位圆上的点的斜率的取值范围,为


综上所述,所求的取值范围是

法二 设题中代数式为 ,则其判别式于是于是解得 的取值范围是


【推荐收藏】导数与数列不等式解题策略汇总

给出三角形一边及其对角求取值问题详细研究

名师秘笈:学好数学要推理,也靠……

长按识别关注,每天快乐提升。


天才在于积累,聪明在于勤奋。——中国数学家 华罗庚

快乐数学邦QQ群 师生群(群号:298147270)近10G文档资料免费提供下载。

群里分享资料、交流心得、互助解题、共勉提高,乐也融融。


高中数学公众号联盟

点击图片 长按识别二维码关注公众号


解忧高中数学

杂货店



高中数学之窗


乐学数韵


直播课堂信息


金爸爸教你

学数学


海哥教你撩数学


快乐数学邦


讲个题


双十一快到了,点击下方广告就等于帮小柔老师的口红杀价^_^


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存