查看原文
其他

Nature | 不可思议!北京大学伊成器团队发现线粒体碱基编辑器诱导大量核脱靶突变

椰子 iNature 2023-01-10

iNature


DddA 衍生的胞嘧啶碱基编辑器 (DdCBE) 是分裂 DddA 半部分和转录激活因子样效应器 (TALE) 阵列蛋白的融合体,可实现线粒体 DNA 中的靶向 C·G 到 T·A 转换。然而,人们对其全基因组特异性知之甚少。2022年5月12日,北京大学伊成器团队在Nature 在线发表题为“Mitochondrial base editor induces substantial nuclear off-target mutations”的研究论文,该研究显示线粒体碱基编辑器在核基因组中诱导广泛的脱靶编辑。对其编辑组的全基因组、无偏分析揭示了数百个与 TALE 阵列序列 (TAS) 相关或独立的脱靶位点。核 DNA (nDNA) 中依赖于 TAS 的脱靶位点通常仅由两个 TALE 重复序列中的一个指定,这挑战了 DdCBE 由靠近定位的配对 TALE 蛋白引导的原则。与 TAS 无关的 nDNA 脱靶位点经常在具有不同 TALE 阵列的 DdCBE 之间共享。值得注意的是,它们与 CTCF 结合位点强烈共定位,并且富含 TAD 边界。该研究还设计了 DdCBE 来减轻这种脱靶效应。总的来说,该研究结果对在基础研究和治疗应用中使用 DdCBE 有影响,并表明需要彻底定义和评估碱基编辑工具的脱靶效应。2022年4月25日,韩国基础科学研究所Jin-Soo Kim(音译,金镇洙)团队在Cell 在线发表题为“Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases”的研究论文,该研究该提出了可编程的 TALE 连接脱氨酶,由定制设计的 TALE 蛋白、分裂或催化缺陷的 DddA 变体和工程化的腺嘌呤脱氨酶组成,可诱导人线粒体中的靶向 A-to-G 编辑。定制设计的 TALED 在人体细胞中非常有效,可在各种线粒体基因的 17 个靶位点催化 A 到 G 的转换,编辑频率高达 49%。总的来说,在短期内,TALED 将有助于在细胞系和动物中产生 mtDNA 突变以创建疾病模型,这是药物开发的重要步骤。在 mitomap 中列出的 90 个已确认的致病性 mtDNA 点突变中,其中 42 个(=47%)可以使用 TALED 在人类细胞系或模型生物中产生,从而实现 A-to-G 转换,而只有 9 个(=10%)的 可以使用催化 TC 到 TT 转换的 DdCBE 来诱导突变。从长远来看,具有更高效率和特异性的 TALED 可以为纠正胚胎、胎儿、新生儿或成年患者中引起疾病的 mtDNA 突变铺平道路,预示着线粒体基因治疗的新时代。此外,正如最近 DdCBEs 所示,编码植物中数百个基因的叶绿体 DNA(其中许多基因对光合作用至关重要)可以用植物兼容的 TALED 进行编辑,从而开启植物遗传学和生物技术的新篇章(点击阅读)。2022年4月4日,博德研究所刘如谦团队在Nature Biotechnology 在线发表题为“CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA”的研究论文,该研究为了提高编辑效率并克服 DddA 严格的 TC 序列约束,使用噬菌体辅助的非连续和持续进化来进化具有改进活性和扩大靶向范围的 DddA 变体。DddA6 和 DddA11 大大提高了全蛋白碱基编辑的有效性和适用性(点击阅读)。

2022年3月18日,中国农业科学院深圳农业基因组研究所左二伟、中国科学院脑科学与智能技术卓越创新中心杨辉、上海脑科学与类脑研究中心/临港国家实验室胥春龙、上海交通大学章美玲共同通讯在 Cell Discovery (IF=11)在线发表题为“Mitochondrial base editor DdCBE cause substantial DNA off-target editing in nuclear genome of embryos” 的研究论文,该研究使用 GOTI方法(点击阅读),以评估 DdCBE 对 mtDNA 和核 DNA 修饰的脱靶效应。该研究首次展示了 DdCBE 在整个核基因组中导致数千个脱靶 SNV,这些 SNV 富含 C-to-T/G-to-A 转换,这是低保真碱基编辑器 BE3 产生的 SNV 数的两倍。总之,该研究发现DdCBE 对核基因组具有广泛的脱靶效应,强烈需要优化 DdCBE 以在 mtDNA 上进行特定的碱基编辑,特别是在用于治疗线粒体疾病之前(点击阅读)。

2022年2月1日,上海交通大学章美玲,李文及中国科学院脑科学与智能技术卓越创新中心杨辉共同通讯在 Cell Discovery  在线发表题为“Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE” 的研究论文,该研究表明,DdCBE 是一种有效的碱基编辑器,可在人类胚胎 mtDNA 中诱导点突变,并且在 8 细胞胚胎中的效率要高得多。 鉴于旁观者和脱靶编辑特征,DdCBE 仍有待进一步优化用于未来的基础和治疗研究。2022年2月1日,南京医科大学许争锋、沈斌及凌秀凤共同通讯在 Cell Discovery 在线发表题为“DdCBE-mediated mitochondrial base editing in human 3PN embryos” 的研究论文,该研究首次证明了在人类 3PN 胚胎中进行 DdCBE 介导的线粒体碱基编辑的可行性,表明在人类早期胚胎阶段进行致病性 mtDNA 突变校正的可能性。 理论上,DdCBE可以纠正mtDNA中的一系列致病性A ∙ T-to-G ∙ C突变,从而达到治疗效果。尽管在 3PN mtDNA 中检测到的脱靶编辑可能不足以产生表型,但当前的线粒体碱基编辑策略需要进一步优化以满足任何临床应用的需求。2020年7月8日,博德研究所David R. Liu及华盛顿大学医学院Joseph D. Mougous共同通讯在Nature 在线发表题为“A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing”的研究论文,该研究描述了一种细菌间毒素,将其命名为DddA,它可以催化dsDNA中胞苷的脱氨。该研究设计了无毒且无活性的split-DddA半分子:DddA分割的一部分结构域(转录激活子样效应子阵列蛋白)和尿嘧啶糖基化酶抑制剂的融合,产生了无RNA的DddA衍生的胞嘧啶碱基编辑器(DdCBE),可催化人mtDNA中的C•G到T•A转化,具有高靶标特异性和产品纯度。该研究使用DdCBEs建模人类细胞中与疾病相关的mtDNA突变,从而导致呼吸速率和氧化磷酸化的改变。不含CRISPR的DdCBE可以精确操纵mtDNA,而不是消除因被靶向核酸酶切割而产生的mtDNA拷贝,这对线粒体疾病的研究和潜在治疗具有广泛的意义点击阅读)。


已知线粒体 DNA (mtDNA) 的突变与大多数成人发病的线粒体疾病有关,每 5000 名成人中约有 1 人受到影响。虽然已经报道了很多与 mtDNA 突变相关的严重综合征,但有效的治疗方法很少,也没有已知的治愈方法。 为了应对这样的挑战,已经开发了各种基因治疗策略。例如,线粒体靶向核酸酶,如锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALEN),已被用于通过直接降解突变的 mtDNA 分子来降低细胞中的异质性水平。
最近,据报道,无 RNA 的 DddA 衍生的胞嘧啶碱基编辑器 (DdCBE) 可以精确编辑 mtDNA 而不会导致双链断裂。因此,与以前基于破坏的策略不同,新方法不会将 mtDNA 的拷贝数降低到有害的低水平,特别是对于高突变负荷的情况。
线粒体碱基编辑器基于 DddAtox,这是一种细菌毒素,可催化双链 DNA (dsDNA) 上的脱氧胞嘧啶 (dC) 转化为脱氧尿嘧啶 (dU)。为了避免潜在的毒性,脱氨酶被分成两半,一个包含 DddAtox 的 N 末端 (DddAtox-N),另一个包含 C 末端 (DddAtox-C)。当由一对线粒体靶向信号 (MTS) 连接的 TALE 蛋白组装时,这些半部分将重建脱氨活性,其方式类似于 ZFN 和 TALEN 中 FokI 单体的组装。因此,只有当两个 TALE 重复同时与目标基因组位点结合时,DdCBE 才诱导预期的 dC 到 dU 编辑。
提高 DdCBE 特异性的策略(图源自Nature
虽然 DdCBE 是一种很有前途的线粒体疾病方法,但仍缺乏对其脱靶效应的公正和全面的分析。Mok 及其同事根据对核假基因的分析,报告了 mtDNA 中不同程度的脱靶编辑,并且在核 DNA (nDNA) 中没有脱靶效应;然而,DdCBE 的全基因组特异性仍未得到解决。该研究显示线粒体碱基编辑器在核基因组中诱导广泛的脱靶编辑。对其编辑组的全基因组、无偏分析揭示了数百个与 TALE 阵列序列 (TAS) 相关或独立的脱靶位点。

核 DNA (nDNA) 中依赖于 TAS 的脱靶位点通常仅由两个 TALE 重复序列中的一个指定,这挑战了 DdCBE 由靠近定位的配对 TALE 蛋白引导的原则。与 TAS 无关的 nDNA 脱靶位点经常在具有不同 TALE 阵列的 DdCBE 之间共享。值得注意的是,它们与 CTCF 结合位点强烈共定位,并且富含 TAD 边界。该研究还设计了 DdCBE 来减轻这种脱靶效应。总的来说,该研究结果对在基础研究和治疗应用中使用 DdCBE 有影响,并表明需要彻底定义和评估碱基编辑工具的脱靶效应。

参考消息:
https://www.nature.com/articles/s41586-022-04836-5

END内容为【iNature】公众号原创,转载请写明来源于【iNature】


微信加群


iNature汇集了4万名生命科学的研究人员及医生。我们组建了80个综合群(16个PI群及64个博士群),同时更具专业专门组建了相关专业群(植物,免疫,细胞,微生物,基因编辑,神经,化学,物理,心血管,肿瘤等群)。温馨提示:进群请备注一下(格式如学校+专业+姓名,如果是PI/教授,请注明是PI/教授,否则就直接默认为在读博士,谢谢)。可以先加小编微信号(iNature5),或者是长按二维码,添加小编,之后再进相关的群,非诚勿扰。



投稿、合作、转载授权事宜

请联系微信ID:18217322697 或邮箱:921253546@qq.com



觉得本文好看,请点这里!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存